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SyMBOLS
L A specimen length and cross-sectional area
P;o load; true equivalent stress averaged over cross section
€,de,Ac  'local true equivalent plastic strain rate and strain increments
€de, A€ same, averaged along bar
6. H 'strain-hardening rates
B M ‘strain-rate sensitivities of the flow stress
d, 6p ‘deceleration parameter and constant stress or load
b, ¢ iits derivatives with respect to strain rate and stress
u; E telastic modulus for slip process; for tensile bar
S;E  machine-plus-specimen compliance; its inverse
Us; Ug . velocity of sound; dislocation velocity
o, O, jfriction stress and generation stress for dislocations
Oy, €L : Liiders front propagation stress, Liiders strain
Up; € Liiders front velocity; strain rate at the front
f F - volume fraction deforming or deformed
Y ' relative area gradient along bar.

FOREWORD

This is not a review article. It does not summarize our curreni understanding in the
literature of the many different phenomena associated with nonuniform deformation and
unstable flow. It does not emphasize the most pressing current problems or arguments. And
most of all, it makes only scant reference to available experimental evidence, though
suggestions for needed measurements are occasionally made.

This article is an attempt to answer the question, what material characteristics determine
which of the various kinds of nonuniform or unstable deformation are observed, and how
rapidly they develop. It is an exposition of a scheme to evaluate and represent relevant
material properties, and it lays the groundwork for a prediction of macroscopic behavior
under various boundary conditions.

The view presented is a personal one, which has not as yet had the benefit of sufficient
wide-spread scrutiny. While many of its component parts are rephrased versions of results
absorbed from the literature, there are some novel suggestions. They were developed in
large part through discussions with many colleagues; in particular, the contributions by
J. L. Duncan, J. D. Embury, J. J. Jonas, R. B. Schwarz, and A. P. L. Turner are gratefully
acknowledged. 1

This work was performed under the auspices of the U.S. Department of Energy and, in
part, during a Visiting Professorship at McMaster University in the fall of 1978.

1. INTRODUCTION

Nonuniform deformation exerts a disturbing influence in all three areas of concern in the
mechanical behavior of materials: testing, structural strength, and forming. The testing of
mechanical properties is usually done on tensile specimens or other extended samples:
unless the deformation is uniform, the test data do not represent (local) material properties.
In structural applications, it is often important to have a margin of safety if the yield stress
should indeed be exceeded: wide-spread, well-controlled plasticity is better than local, un-
stable behavior; and insensitivity to local stress concentrations is desirable. In forming
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applications, there are usually a number of degrees of freedom, both with respect to some
components of strain, and with respect to the locations at which straining actually takes
place; even if localized deformation does not lead to failure, it may cause disturbing surface
irregularities, e.g. in sheet forming.

Nonuniform deformation in the sense used here is not deliberately caused, such as in
plate bending operations; it is a path chosen by the material from all the options allowed by
the boundary conditions. Thus, it is itself an expression of material behavior. The questions
to be addressed in this article are, what specific material properties are responsible for the
various kinds of observed nonuniformities, how they can be measured and (in principle)
controlled, and what laws govern the rate at which nonuniformities develop.

The specific modes of nonuniform deformation that we shall treat in some detail are
Liiders front propagation, jerky flow, and (tensile) necking. In all of them, rate effects play a
major role, and there is a basis for useful comparisons. This leaves out a number of other,
very important modes; e.g. localized necking in sheets"~* and shear band formation in
rolling,® in which geometric effects predominate; and adiabatic heating,® which in many
cases only serves to accentuate drastically an already existing tendency for localization.
Further, we will not discuss any changes in mechanism, such as they may occur especially
as a consequence of the localization; e.g. voiding.

With respect to necking in tensile bars and sheets, a considerable amount of work has
been done on two aspects of the problem: the geometric conditions; and the possible criteria
that determine whether or not deformation will (or at least may) turn nonuniform.”’~'%
Inasmuch as these criteria attempt to provide a yes/no answer under any given set of
conditions, they address the question of stability. Of wider concern would be an under-
standing of the rate with which nonuniformities develop, and how severe they are or may
become. This involves material properties in a much more intimate way, and therefore
requires that the kinetics of plastic deformation (even when uniform) be described realisti-
cally'®- 1 (and not only in steady state).

Nonuniform deformation by Liiders front propagation or by jerky flow, on the other
hand, has been treated primarily from a metallurgical standpoint," >~ and discussions of
the phenomenological conditions that generally may cause such conditions have been
scant.?!=23 A major aim of this article is to achieve an integration of the mechanisms with
the mechanics, for a variety of modes of nonuniform deformation.

The physical mechanisms of deformation need to be known in some detail, if the aim is to
improve some current material properties, or when an extrapolation of the treatment
beyond the limits of measurement is necessary. Our aim is more modest: we primarily wish
to identify which material properties are even of concern. For such limited scope, a pheno-
menological description is adequate, provided it is based on realistic general assumptions
about the deformation behavior. It does point the way toward which specific processes need
to be understood more fully.

A description of the material properties, and a prescription for their measurement, is
fraught with particular difficulties under just those conditions that favor nonuniform defor-
mation. In fact, in some cases the properties immediately preceding the development of a
nonuniformity are in practice inaccessible, because failure ensues so rapidly. In the particu-
lar cases we shall consider, however, localization is either slow or limited. Even here,
though, one must carefully distinguish between local material properties, in terms of which
the tendency towards localization will be expressed, and the ensuing properties of a macro-
scopic specimen that does deform nonuniformly.

When nonuniformities develop, different elements of the specimen evolve, almost by
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definition, along different paths. A description that is independent of path is possible only
under certain conditions, which are not always satisfied in plasticity. When they are not, it
is important that the relevant properties be measured along the relevant path—and that
path independence is not presupposed in the entire formalism, as it usually is. For this
reason, the definitions of the material parameters and the constitutive relations are dis-
cussed at some length. Changes of path in (six-dimensional) stress space, as distinct from
changes of path in (equlvalent) stress/strain-rate/strain space, are not discussed in
detail.?+ ¥

Experiments on the rate of development of nonuniform deformation and on the physical
mechanisms associated with it have not been plentiful. There is a significant body of data on
Liiders front propagation,>=% but it has only rarely been coupled with experiments on
the rate sensitivity in uniform deformation.®- 3% While rate sensitivity has been of con-
siderable concern in experiments on jerky flow,!8: 22: 31-35) the details in space and time of
the flow localization have rarely been followed in detail.®® In the regime of slow necking,
the innate hardening (and its rate sensitivity) which are, in some cases, the root cause of the
relative stability, have not been investigated as systematically as the effects of rate sensitivity
of the flow stress.G7—40 |

1.1. Overview

The plan of the presentation is as follows. The three specific modes of nonuniform
deformation, i.e. Liiders front propagation, jerky flow, and necking, will be discussed in
section 4. Sections 2 and 3 lay the groundwork common to all of them, first in terms of local
properties, then as concerns the interaction of straining elements in a uniaxial test specimen.

In the section 2, we will define material properties relevant to nonuniform deforma-
tion, and describe how they can (or cannot) be measured when deformation is in fact
nonuniform. A special effort is made to allow for path-dependent evolution. The most
appropriate path is the deceleration (or acceleration) at constant stress (or load): the evolu-
tionary property measured|in a creep test. Some physical conditions are described under
which flow tends to accelerate: negative strain-hardening (either transient or permanent),
and negative rate sensitivity. The latter leads to instabilities even on a local basis.

Section 3 deals with the iproperties of a tensile bar: many alternative straining elements
under the same load. Their interactions with each other and with the testing system are
treated from both the geometric and dynamical points of view. The conditions are discussed
under which accelerating deformation of material elements leads to a tendency of specimen
deformation to localize. In a general way, nonuniform deformation is described in terms of
strain and strain-rate gradients; the latter is accorded prime significance. The rate of devel-
opment of these gradients is primarily governed by the (local) acceleration parameter.

In section 4, we treat in some detail the three most important modes of nonuniform
deformation: Liiders front propagation, which is associated with a high generation stress for
slip; jerky flow, which follows from an intrinsic negative rate sensitivity; and necking which,
in its severe form, is a result of an approach to (local) steady-state deformation. In the
context of necking, we will also investigate the influence of specimen defects on the unifor-
mity of deformation. Nonuniform deformation in tests other than tension will be briefly
discussed. It turns out to obey almost the same relations—provided the specimen is uniaxial
in the sense that it may decompose into alternative straining elements. There are modes of
sheet deformation in which this is the case; however, the existence of an added degree of
freedom in the dimensionality of stress and strain poses a qualitatively new problem.
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The article concludes with a summary, a statement of the results considered new, and an
assessment of the current status.

2. MATERIAL BEHAVIOR

2.1. Local Variables

The mechanical behavior of a material is most commonly investigated in a tensile test.
This test has a significant disadvantage in that it probes a large number of straining
elements simultaneously: only when they all behave identically is a macroscopic measure-
ment of displacement and displacement rate descriptive of the strain and strain rate experi-
enced by the material, i.e. any one element of it.

Whether deformation is in fact uniform or nonuniform is itself, however, determined by
some material characteristics. It is imperative, then, that one can execute at least a thought
experiment in which the necessary parameters describing the behavior of the material can be
measured, in order to compare these with the parameters describing the behavior of a
tensile specimen.

Such a thought experiment can be executed as follows. Assume that a particular cross
section of a tensile specimen is a material element of uniform properties. Indeed if it were
not, one would have to know the average properties over the cross section in order to
describe differences in deformation from one cross section to another. Now imagine a way
to measure the local area; e.g. by winding a wire around it in a frictionless way and
recording any changes in its free length (Fig. 1). The (local) tensile stress ¢ is then given in
terms of the load P on the specimen by

o= P/A M)
Changes in the local cross-sectional area measure local changes in tensile strain:
de = —din A @

This may be thought of as the relative length change of the element, under volume con-
stancy. Similary, the tensile strain rate is

é = —(dln A/01), 3)

where ¢t is the time, and “at constant x” is to emphasize that this is measured on a fixed
material element.*

In this way, both ¢ and € can be measured as functions of time or strain. They can then
be used as inputs to a servo-loop that controls the load on the specimen or its length, such
as to keep ¢ = const., or € = const., or follow some other prescription, at the measured
cross section.“*? 43 This will work only so long as this cross section keeps deforming: if the
entire prescribed displacement rate were supplied by another part of the specimen, or if the
load carrying capacity of other elements were exceeded, control would not longer be poss-
ible. In addition, the method requires an “instantaneous” response of the servo-system, as well

*Equation (3) is the preferable expression for the connection between strain and area.changes, since it explicitly
precludes an interpretation of eqn. (2) in terms of gradients of strain and area, which are independent of each other,
since area gradients can be due to machining defects. s

PMS 10 -0
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FIG. 1. By measuring the load P and a cross-sectional area A as a function of time, the local stress,

strain rate, and strain increment can be determined even when deformation is nonuniform. Through

servo-control of P, any of the variables can be prescribed. Their relation describes material
properties.

as “instantaneous” communication along the specimen. The actual dynamic response of a
tensile bar will therefore have to be considered.

The above discussion outlined an elaborate operational procedure to measure local vari-
ables. The definition of stress and strain rate should, of course, be independent of the
particular measurement technique. In addition, it should hold for compression and when
there is more than one component of stress and strain rate. What we mean, in general, by ¢
and ¢ are the (convected) equivalent stress and equivalent plastic strain rate, respectively, so
that relations between them characterize material properties.* (Elastic responses will be
discussed only in connection: ‘with the testing machine, and anelastic effects will be ignored.)

In the following sections, we will define phenomenological parameters measured locally,
which will be used to characterize the material, and then discuss in particular the behavior
of materials with negative hardening rate or negative rate sensitivity. These regimes are
associated with some forms of nonuniform deformation in a tensile specimen; however, they
exhibit their most important characteristics already on a local scale.

Throughout this work, we shall regard the temperature to be constant during all tests.
The influence of temperature on the material behavior is of course profound, especially with
regard to some of the properties to be discussed here. We will often refer to different types
of “materials” when we really mean the same material at different temperatures.

The restriction to constant temperature also implies that we shall not consider one
important cause for an accentuation of nonuniform deformation: namely, adiabatic heating
due to the deformation.®

?2.2. Phenomenological Parameters

A fundamental problem in describing material behavior, especially with regard to mech-
anical properties, is that the response changes during the test. In physical terms, a material
is not fully described unless!its entire metallurgical structure is known, and this structure
changes with the ongoing deformation. In phenomenological terms, the current properties
of a material depend on its current state, and this state itself is undergoing evolution.

The conditions that lead to instabilities and flow localization depend very much on the
current state. They are different, for example, for a material that is highly work hardened and
for the same material in the annealed condition. Therefore, when we attempt to characterize

*When changes in stress or strain path are considered, the evolution may not necessarily be describable in terms
of equivalent stress and equivalent plastic strain-rate only.
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the “material behavior” or “material properties” that are important in this context, we must
mean those in any given state. For example, in a discussion of necking, we imagine the
material to have been prestrained to a point just before the region of the stress strain curve
that we want to describe. When it is then reloaded, it will display its characteristics such as
flow stress, rate sensitivity, etc., as they are relevant to the current state.

The most obvious mechanical properties of a material (in its current state) are*? its flow
stress

o = of€; state) )
or equivalently its initial creep response
¢ = é(o; state) 5)

These equations are meaningful only if the “state” is sufficiently specified to make them
unique. This may take more than one parameter,** *® but in practice it seems to require
only a few—not as many as, say, a complete specification of the dislocation distribution, or
a complete specification of the thermo-mechanical history.**

The integral properties given by egs. (4) and (5) are, however, not responsible for the
development of instabilities: what matters are their variations. We define first the two
evolution rates: the strain-hardening rate @ in a constant-strain-rate test,

d0

e = = @ (€; state) (6)

é

and the deceleration parameter J in a constant-stress creep test,

dlné
6= — 6‘6‘6 = 8o state). )
Another important quantity is the ratio of these two paraméters:
_ e do
P =5 = el ©

It is the rate sensitivity of the flow stress at constant state, which could have been defined
directly from egs. (4) and (5) (regardless of how many state parameters there are). We have
here chosen to define it by the ratio of the two evolution parameters, which explicitly allows
for (differential) strain accumulation during the tests. The equivalence of the two definitions
follows from two important concepts: first, as was implied in the statement of eqgs. (6) and
(7), that the (current) rate of evolution of the state is also a unique function of the (current)
state (and one of the external state variables ¢ and €); and second, that the state does not
change in the limit of a vanishing strain increment. (We will discuss changes with time at
zero strain rate in the next section.)

For some applications, it is more convenient to express the stress in logarithmic form.*

*From a physical point of view, this is less desirable: many flow stress mechanisms are linearly additive,*” none
are multiplicative; and nondimensionality should rather be obtained by dividing the stress by an elastic modulus,
especially when different deformation temperatures are encountered.

The parameter H is identical to Hart’s®! 7 (previous statements to the contrary''* notwithstanding); however, M
is more general than the parameters m and v used by Hart.®- *® Both H and M are generalized from our previous
definitions* ¥ in that they are valid for an arbitrary number of state parameters.
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Then, the straining-hardening rate (eq. (6)) is replaced by the work-hardening rate

0
H= 2" = Hig;state) )
and the dimensionless rate sensitivity is defined, in analogy to eq. (8), by
‘ _H _ dlneo 10
T8 O0Iné|gme (19

The role of strain in all of the above relations deserves some discussion. It appeared in
differential form only, in the definitions (6), (7), and (9) of the evolution parameters. These
definitions are often looked upon as partial derivatives of a function a(é€), which would
imply use of strain as a statie variable, which it is not. The definitions as given are instead
meant to be variations along a prescribed path, without prejudice as to whether an inte-
grable differential equation’ exists between them.**® For this reason, the rate sensitivities
defined in eqs. (8) and (10) are not to be interpreted as partial derivatives taken at constant
strain (regardless of how thi$ strain was achieved), but rather as instantaneous variations, i.e.
at constant state. The question of path dependence is an important one in plasticity, and
will be discussed more fully in the next section. Here, we merely wish to ascertain that our
definition of the phenomenological parameters did not presuppose path independence in
(equivalent) stress/strain-rate/strain space.

Figure 2 illustrates the situation in a three-dimensional plot. The vertical axis is the stress,
with an origin of zero. To the left, we plot the strain rate logarithmically, choosing as the
origin some reference strain rate €,. To the right, we plot strain as it is accumulated from
the present state on. (This is emphasized by calling it e<,.) Any test path must proceed in
the positive direction along this coordinate; but different tests need not follow different
paths on the same surface.

FIG. 2. Material characteristics in a particular state: stress strain curves (a) at different, fixed strain

rates (strain-hardening rate ©); creep curves (b) at different, fixed stresses (deceleration parameter §);

and instantaneous rate sensitivity B (curve c¢). When the surface formed by the a set is the same as

that formed by the b set, strain can be used as a state parameter; generally, they diverge with
increasing strain.
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The curves labelled a are small portions of stress strain curves at three different, fixed
values of strain rate. Their initial slope is ©(€). The curves labelled b are small portions of
creep curves, as they are frequently plotted, as In € vs ¢, for three different, fixed stresses o.
Their initial slope is —&(c). The fact that the slope is negative, shows that creep is decelerat-
ing; in other words, this material exhibits normal primary creep, in accord with the fact that
it is strain hardening. The nonunique nature of the “surface” in Fig. 2 has been emphasized by
showing all the creep curves (b) overlaying, rather than intersecting, the stress strain curves
(a). (They have deformed at higher strain rates and may therefore be harder.)

Finally, the curve labelled c in Fig. 2 displays the dependence of the initial flow stress
(measured at the current state of the material) on the strain rate prescribed—or, vice versa,
the initial strain rate as a function of a prescribed stress. Its slope is the rate sensitivity f.
Note that only a single curve ¢ is shown: for the beginning of the current test. Additional
curves ¢ would make sense only if an identical new state could be reached along the
different paths, and if one knew the relation between the strain increments required to
attain this new state along the different paths.

Looking back at the history before the current state was reached, there may, of course,
also have been some path dependence. For example, one may have come to the present
conditions by having prestrained the specimen at a constant strain rate ¢, to a strain ¢,. (In
this case, continued straining under the same conditions would reproduce the curve a
shown in the plane é = ¢,; an abrupt change to a higher but constant strain rate would
produce the other curves a; and a change to creep conditions would be described by the
curves b.) It is quite possible, however, that the same state could have been reached by
prestraining at a different strain rate—only then the amount of prestrain would in general
have been different also. It is precisely the advantage of the state parameter description to
have eliminated the need for knowing anything at all about the past: its only relevance is in
the current state, which reflects itself in the current conditions. This does not mean, how-
ever, that one need not know the path to be taken in the future, before one can describe the
material response over a finite increment of strain.

The path that will be of particular interest in a discussion of local accelerations and of
developing differences between different straining elements, is that at constant stress (or
load). On the other hand, in many cases the material will have been prestrained at more or
less constant strain rate. Thus, a path change is likely to occur as instabilities develop. We
propose to deal with this by describing the material in the relevant initial state (e.g. strain
hardened), and then describing its properties as relevant to the expected path. In the
following, we will first discuss some special cases of path independence, and formulate the
constitutive relations in a more general (and, it is believed, novel) way. The physical con-
ditions underlying our insistence on some extra measure of generality in the present context
will also be mentioned. Subsequently, diagrams of the kind shown in Fig. 2 will be
presented for cases where one or the other material parameter is negative.

2.3. Constitutive Relations

The material parameters ©® and § may be thought of as (reciprocal) coefficients in a
differential constitutive relation of the form*®

de = 3 _ dln< (11)

It expresses a smooth variation of strain, stress and strain rate with each other, but does not
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FiG. 3. Two continuous tests under conditions a and b (e.g. at different strain rates), and an abrupt

change from a to b conditions at point 1. Typically, the stress jumps to 2 (not 3, as it would if strain

were a state parameter), and then follows curve d (not ¢, as it would if there were any single
parameter of state).

imply de to be a perfect differential (as is emphasized by using d-instead of d), nor even that
eq. (11) is integrable (even if multiplied by a suitable factor). As Hart has shown in an
elegant paper,*® integrability follows when © and § are completely specified by o and ¢,
and do not depend on the state of the material (or its history) in any other way. When this
is the case, a mechanical equation of state is said to exist,*® in the sense that the material
behavior can be described by equations involving only external variables (even though the
strain is generally not one of them).

A specification of both ¢ and € (rather than just either one of them, as in egs. (6) and (7))
is equivalent to having specified one of the state parameters, as can be seen from eq. (4).
Thus, a sufficiency of specifying ¢ and €, but no further state parameter, is tantamount to a
sufficiency of specifying a single parameter to characterize all relevant aspects of the
state.*¥ This may well be an unrealistic assumption for some important regimes of defor-
mation behavior.*® Even then, equations of state in the sense of egs. (4) or (5) would still
exist, and would be preferable over any description involving the history explicitly. They
would require specification of at least one internal variable, not only external variables;
however, the evolution coefﬁcients @ (or H) and J could serve as macroscopic markers for
these internal variables, by yirtue of eqs. (6) and (7).

The reason for our insistence on generality is illustrated in Fig. 3. Curves a and b refer to
tests along two different, contmuous paths, such as at two constant strain rates. When the
conditions are abruptly changed from one to the other at point 1, the flow stress will
generally change abruptly to a point such as 2. Note that, if the strain specified the state, the
jump would have to be to point 3. Now if the stress and strain-rate (or one appropriate state
parameter) were sufficient to specify the state, points 2 and 4 should be equivalent, and
curve ¢ should be followed, upon continuation of the test. (Curve c is parallel to curve b,
shifted in the strain direction.) In reality, the curve followed is often of type d.** Thus, ©
is not a unique function of ¢ and ¢, and eq. (11) is not integrable. In physical terms, there
must be a second structure parameter, which adjusts to its new steady-state value during the

"
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transient. The length of this transient is of the order of a few percent, which may be
negligible in a consideration of large-strain behavior,'® but not when momentary instabili-
ties are of concern.

In summary, there are three situations to be distinguished:

(1) The strain can serve as a state parameter (in unidirectional tests of varying strain
rates). This requires that strain hardening be independent of strain rate, which is rarely the
case, as evidenced by the fact that the rate dependence of steady state (or of the UTS) is
usually considerably greater than that of the yield stress. However, near one of these limits,
the assumption may be sufficiently close to the facts: at small strains (especially at low
temperatures*®); and at very large strains if transients are ignored (i.e. if curve d in Fig. 3 is
approximated by curve b from point 3 on). Then and only then is the conventional engin-
eering description in terms of stress, strain, and strain rate adequate; in diagrams like Fig. 2,
the material characteristics are described by a unique surface. In this article, we will never
presuppose these conditions, since much more generality can be gained with little effort by
assuming the existence of an equation of state without assuming the strain to be a state
parameter.

(2) The material properties—strain-hardening rate @, deceleration parameter J, etc.—are
unique functions of stress and strain-rate. Then, nothing further need be known about the
state of the material to describe its differential constitutive behavior. Integration is possible
—but to actually perform it, one needs to know the integrating factor of the strain or,
equivalently, the nature of the single state parameter and its evolution. Frequently, it has
been assumed* !» that @is an integrating factor so that the flow stress can be used as a
state parameter. If one knew the state parameter, one could describe the material character-
istic by a unique surface in the space of o, €, and this parameter. In stress/strain-rate/strain
space, the surfaces are nonunique—but they are all tangent to each other at the current
state. Thus, if it is observed that the strain-hardening rate and the deceleration parameter
do not change much with strain, path independence can be assumed: either the state does
not change much, or the macroscopic behavior is insensitive to it. This is what we shall
assume in some applications (Liiders front propagation, jerky flow), in which the total strain
of interest is not large. Then, one can use the differential properties to gauge macroscopic
behavior.

(3) More than one state parameter is necessary as evidenced, for example, by the existence
of nonnegligible transients. (The transients are evident only after abrupt changes, but the
need for an additional state parameter exists, then, also when the path is smooth.) In this
case, there is no way to avoid path dependence, and it is therefore important to describe the
material behavior along the expected path. This is why we shall keep the symbol ¢ as a

measure of deceleration/acceleration behavior, and use its equivalence to @/ only in special
cases.

Equation (11) was written to obtain the strain (if possible) by integration. The material
behavior we are interested in describing here is, rather, its (current) rate of evolution. This is
more transparent when we reexpress eq. (11) as follows:

1 do 1diné
Od 5 de ! (12)

or equivalently (eq. (9)):

I .
Ld na_ldlne___I‘ (13)
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The derivatives in these equations are convected: they relate changes in stress and strain
rate with progressing strain in the same material element to each other. In fact, for some
applications,'' ¥ it is even more transparent to express progress by an increase in time rather
than strain; e.g.

1do| _1omne| _
O i, & o |,

or
1 dlne __lalne' . 05
H oo, 5 al-¢ (15)

Whether egs. (12) or (13) on the one hand, or egs. (14) and (15) on the other, are more
appropriate in any particular case depends on whether the limit that one wishes to include
in the description is that of € — 0 (aging) or ¢ — oo (athermal plasticity*®).

In egs. (14) and (15), we have again specified “at constant x”, in order to emphasize that
the evolution of a particular element is being described. This contrasts with a comparison of
neighboring elements in a tensile bar, by taking differences® '* or gradients.® >® Since the
different elements in a tensile bar may have undergone different strain increments along
different paths, they will generally be in different states; then, eqn. (11) does not hold.

Equations (12) through (15) are various forms of a (differential) constitutive relation de-
scribing the deformation kmetlcs of the material. They were inspired by thinking about
uniaxial, unidirectional tests As we have indicated, other tests may be described by the
same formalism, if ¢ and é are identified with the equivalent stress and strain-rate, respect-
ively.®!) There is no physical reason, however, why the evolution parameters should be the
same in different tensor “dlrectlons even when the equivalent stress is the same.’** For
example, the rate of hardenmg in a torsion test may be different from that in a tension test.
In particular, it is well known that, if the current state was achieved by prestraining, say, in
tension, a subsequent test in torsion may exhibit substantially different hardening behavior.
In some cases, strain hardemng is absent or negative after such a change,®? which may be
due to some instability of the substructure against newly introduced, different types of
dislocations.®*3-3% In other cases, viz. reverse loading, initial hardening is especially high.
Finally, under some conditions, a crystal may decompose into distinct regions some of
which are subject to “geometric softening” (by lattice reorientation).®>: 1» Thus, the evolu-
tion parameters are path dependent in yet another way. This situation has not been exten-
sively investigated, but it may well be of considerable importance in the development of
instabilities, especially in biaxially stretched sheets.

These considerations may render the constitutive relation expressed by any one of egs.
(12) through (15) too restrictive to be of any value in tests other than under radial (in stress
space) and unidirectional loading. Equations (6)(10) continue to define a set of important
evolution parameters, albeitf incomplete.

2:4. Acceleration. Boundary Conditions

One of the material parameters we have defined (eq. (7)) is the deceleration in a creep test,
6. It is a most important parameter characterizing the behavior of a cross section in a
tensile specimen. For when it is negative, deformation accelerates locally (and other cross
sections can decrease their contribution to the strain rate). Thus, we shall be looking for
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conditions under which (egs. (7)-(10))

dm¢| _ . @ H
== "F= i (16)

is positive. This situation may arise either because strain hardening is negative, or because
the rate sensitivity is negative. These two possibilities yield very different results in detail, in
part because in the first case d goes to negative values through zero, in the second case
through infinity. We shall discuss a number of specific situations in the next three sections.
Under “normal” circumstances, i.e. during strain hardening and primary creep, 6 decreases
from the order of 10° to the order of 10, (as H goes from near 10° in early stages of
deformation to 1 at the UTS, and M increases from about 0.01 to the order of 0.1).

The word acceleration (of deformation) might more properly be assigned to the second
derivative of strain with respect to time; however, this is directly related to the parameter we
have been using, inasmuch as

diné €
e = 17
Thus, at constant stress,
€= —8-é? (18)

When § is negative, any strain rate is bound to increase.

It must be pointed out that an increase in strain rate, if possible within the various
boundary and material conditions, is not an option open to the material element, but a
necessity. It is a direct consequence of the maximization of work dissipation under con-
ditions of constant stress and constant temperature: a well accepted principle of irreversible
thermodynamics, equivalent to a maximization of entropy production in a closed system.*®

The accelerations discussed so far assumed that the stress ¢ is being kept constant. This
may not always be the appropriate boundary condition. However, it is much more realistic
than a prescribed constant strain rate (and consideration of softening rather than acceler-
ation as critical material behavior). A constant strain rate cannot always be prescribed, both
because of the nature of tensile specimens, and because of the nature of instabilities, as will
become evident below.

An interesting boundary condition is that of constant load P. It will be particularly
important when we discuss gradients along a tensile specimen. In a local cross section, it is
the only variation that can be undertaken without any involvement of the servo-loop
(except rapid communication along the specimen). Changes in load can be related to
changes in stress by (eq. (1))

dlno _dlnP _dlnA

de  de de 1)
Thus, for tension (eq. (2)),
dlneo .
| = 1 (tension) (20)

The constant-load condition, therefore, corresponds to a plane whose slope is 1 in (Ing) — €
subspace (and O in the é-direction). Figure 4 shows how this plane intersects the (quasi-)sur-
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FiG. 4. Material characterisfics (as in Fig. 2) being intersected by a “test characteristic”, namely for
constant load in tension (dashed plane). Curves a and b lie in the plane and thus follow different
paths than in Fig. 2. The' dotted line indicates how one might have come to the present state.

face that describes the material characteristics in the current state. This state was chosen
such as to make the difference between constant stress and constant load nontrivial; i.e.
near the “ultimate tensile strength” (UTS). The dotted curve at € — €; < 0 shows how one
might have arrived at point 1. From this state onward, the creep rate at constant load
(curve b) goes through a minimum at point 2 and then accelerates.

The rate of deceleration at} constant load can be expressed quantitatively as (egs. (16) and
(19)* ‘

: dlné 1 din 4
| = - —] = _— 21
;5” oe |p o+ M  de @)
which, for tension (eq. (20)), jis(s' 30
Sp = I% (tension). (22)

The difference between & and 8, is not important for typical hardening rates except near
the UTS. When we describé material behavior, we will therefore continue to use 8, and
regard all else as boundary conditions, which “intersect” material behavior. In the case of
significant path dependence, however, it is d or Jp that must be measured, depending on the
precise conditions—not @ and § (or H and M); in other words, the creep test (at either
constant-load or constant stress) is more appropriate than the tensile test, when they yield
different results. |

One further boundary condition of interest is that of stress relaxation. It could, in
principle, be enforced on a local cross section by keeping the area constant through the

*Hart!® defined a stability parameter (5lnA/dlnd), = 8p + 1. It describes constant load, absolute rather than
relative area differences, in part to avoid characterizing a linear-viscous material as “unstable™. Note, however, that
for M = 1, this parameter and our acceleration parameter J coincide.
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servo-control. The more interesting effects are, however, connected with tensile bars, and
will be discussed in section 3.3.

2.5. Substantial Recovery: Negative Hardening

At high temperatures, recovery and even recrystallization may be occurring simul-
taneously with the deformation.®” By themselves, they would cause a decrease of the flow
stress with time. During deformation, this decrease can be immediately observed—but only
in competition with the counteracting strain hardening. One way to express the concurrent
evolution process is to add a recovery term r to the right-hand side of eq. (14) (multiplied
through by @):

Jdo dlné
otl, i

The strain-hardening-only parameter has here been relabelled h, in order to preserve the
definition (eq. (6)) of @ as the measurable change of flow stress with strain, regardless of
what mechanism causes it. This (total, net) strain-hardening rate is therefore now

O =h—rf (24)

Equation (24) displays a particular way in which @ can depend on € (the Bailey-Orowan
relation). In fact, the strain-hardening rate depends on strain rate in many situations,
notably at high strains or high temperatures. In addition to the strictly time-dependent
(static) recovery and recrystallization introduced above, there is dynamic recovery, which is
also described by a subtractive term from the (athermal) hardening rate.*® The strain-rate

dependence is then not as severe as indicated in eq. (24), but is nevertheless often impor-
tant.(58 59

=hé —r. (23)

x

FiG. 5. A state in which hardening is negative; e.g. due to strong simultaneous recovery. The
strain-hardening rate is then usually very rate sensitive (curve a). Creep accelerates (curve b).
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When the (static or dynamic) recovery term outweighs the (constant) hardening term, © (or
H) becomes negative. This situation is illustrated in Fig. 5. As in Fig. 4, the dotted stress
strain curve at € — €; < 0 indicates how one might have attained the current state. If one
continued with the same constant strain rate €;, one would proceed from point 1 along
curve a: under decreasing stress. If, on the other hand, the stress (or the load) is held
constant, one follows curve b: at increasing strain rate.

The acceleration shown in Fig. S is actually quite low. This is due to the fact that the
strain-hardening rate ® was made strongly strain-rate dependent. Had the curves a been
made parallel, for example, the intersection of the “material surface” with the plane H = 1
would have curved away to higher strain rates much more rapidly. It was a cardinal point
of the recent work by Kocks, Jonas, and Mecking!'® that the rate sensitivity of strain
hardening, not only of the flow stress, is important for the rate of neck development, which
is a consequence of the acceleration discussed here. It will be described in more detail later.

It must be pointed out that not all negative slopes in usual stress—strain curves corre-
spond to local acceleration: this is true only for those in local stress strain curves, as they
were defined in the foregoing sections. A load elongation curve, or even a true stress vs true
strain curve from a tensile test may have a negative slope because of an increasing “active
plastic volume”, as will be discussed more fully in the next section.

2.6. Structural Instabilities: Transient Softening

In materials with small coherent precipitates,®? or with small dislocation loops created
by neutron irradiation,®") it is often assumed that with the passage of each successive
dislocation over the slip plane, the glide resistance decreases. This should give rise to
negative strain hardening—until the process is exhausted or can no longer keep up with the
simultaneously occurring hardening processes.

The stress strain curve at constant strain rate should then look like curve a in Fig. 6:
exhibiting an initial decrease and a subsequent increase in flow stress. This is not what is
observed macroscopically in such materials, for a very good reason. As is evident from the
figure, an alternative path is/open for the deformation: namely, to proceed at constant stress
from point 1 along curve b—part of the creep curve. (Its endpoint 2’ is not identical to point
2 when path dependence is important.) We have assumed in this chapter that we can
servo-control the local strain rate, and thus follow curve a throughout. However, this may
need a really rapid response of the system, to prevent the deformation from accelerating.
The actual path followed may lic somewhere in the shaded region, and will probably
depend on the relation between the magnitude of the negative § and the system response.
When ¢ is strongly negative, it becomes difficult to prevent local acceleration, and the path
followed will be curve b up to point 2/, and only then curve a'. A constant-stress plateau is,
in fact, commonly observed in these materials; treatment of the detailed conditions will
have to await a discussion of the interaction between alternative straining elements in a test
specimen.

Another physical snuatlon showing the same behaviour occurs after a change in loading
path. In single crystals that were deformed first on one slip system and then another, it has
been observed that the initial strain-hardening rate is sometimes quite low,*> > and that
there are indications of local instabilities.*>* °* In polycrystalline materials, a change in the
direction of straining has also been associated with some less-well-specified softening; in
fact, it has been speculated that the generally low hardening in torsion tests may be due to
this effect.(6?
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Fi. 6. Transient softening: local stress strain curve (a). Creep first accelerates, then decelerates
(curve b). Unless control is very fast, path b will be followed from point 1 to point 2, not path a.
(Points 2 and 2’ are distinct when deformation is path dependent.)

Finally, “work softening” is observed after a change in strain rate or increase in temperature.
We will find in section 3.3 that this cannot be due to a localized structural instability.

A structural instability of the most severe kind occurs after extensive segregation of solute
atoms to dislocations during previous aging. Here, one talks of a generation stress (to
unlock the dislocations'®) and a propagation stress (necessary for continued flow). In
Fig. 7, an effective generation stress* is shown as point 2, a solitary point relating to the
beginning of the current test. Point 1 is a hypothetical initial propagation stress, assuming
that the dislocations were not locked; this propagation stress increases with strain along
curve a.

In a real test at this (aged) initial state, the stress must first be raised to point 2. Having
reached this point, the material will immediately jump to point 3 and start deforming at a
rate for which the propagation stress is equal to the generation stress (which, for simplicity
was assumed rate-independent—but in any case must be less rate sensitive than the propa-
gation stress for the mechanism to work). Since the rate sensitivity of the (propagation) flow
stress was assumed positive, there will be such a point 3 at a finite strain rate. From here on,
the material could strain at constant stress along curve b to point 4'; or the servo-loop
could become effective that attempts to hold the strain rate constant, forcing the material
back down on curve a between points 1 and 4; however, the initial jump from 1 to 3 could
not have been prevented in any test. Again, the situation more likely to occur in a tensile
test is the sequence 1-2-3-4', and then along a’ if constant strain rate is attempted. We shall
show later that the situation described here can lead to Liiders front propagation.

The acceleration behavior exhibited by a material under the conditions described in this
section differs from that in the last inasmuch as it is transient: the acceleration occurs only
at the beginning of the test and automatically leads into subsequent deceleration—back to
the initially attempted strain rate (or lower if creep is considered). Thus, the amount of
strain that can accumulate under these conditions is essentially limited. This will be relevant
to our discussion of tensile bars.

An important difference between the strain and strain-rate axes can be appreciated in
Fig. 7. We have claimed that the material behavior will jump discontinuously from point 2 to

*When there is a generation stress, the material behavior is sensitive to stress concentrations; thus, the observed
upper yield point is usually lower than the generation stress, and not very reproducible. (See Fig. 17.)
p p & y rep g
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o

F1G. 7. I the stress was raised to a level (2) above the normal flow stress (point 1), for example

because of a difficulty of dislocation generation, the strain rate will jump from point 2 to point 3, and

then deformation can follow the decelerating path b to point 4'. At this point, the state is similar to
that after uniform deformation (point 4).

point 3:the strain rate can ¢hange instantaneously. On the other hand, it is not possible to
accumulate strain instantaneously at a finite strain rate; thus, a direct jump from point 2 to
point 4 is impossible. This shows again that strain rate is a state variable, whereas strain has
meaning only in incremental form.

2.7. Dynamic Strain-aging: Negative Rate-sensitivity

A negative rate sensitivity can arise in solution hardened alloys by dynamic strain-aging:
the glide resistance increases with the time available for diffusion (or other rearrangement)
of the solutes to or near the dislocations. The details of the proposed mechanisms vary and
may, in fact be different for different classes of materials. For illustration, we will use one
based on the jerky glide'*® of dislocations: their stop-and-go motion within each slip plane,
under the action of thermal activation. In this case, the macroscopic strain rate is described
by

| € = €oft,, (25)

where €, and ¢, are apprdpriate averages, respectively, of the strain increment after a
successful activation and the waiting time between “jerks”.

Figure 8 shows, in the cu}rve labelled ACTIVATION, how the waiting time decreases as
the stress is raised. In fact, there is a stress at which no thermal activation is needed for
long-range slip. This mechanical threshold*® depends on the density of obstacles and on the
strength of their interaction with the mobile dislocations. Aging can therefore raise the
mechanical threshold in the case of atomic-sized obstacles, if their mobility is high enough.
This is demonstrated by thé curve marked AGING in Fig. 8.

It is the contention of the most promising theories of dynamic straining?2 36+ 18- 19) that
this aging process can occur during the waiting time of dislocations at relatively strong
obstacle configurations. In that case, the scale of the abscissa becomes identical for acti-
vation and for aging, and both are linked to the strain rate by eq. (25).* Since the thermally

*Simultaneous static aging, on the other hand, is proportional to the total time elasped: it occurs even when
€ = 0; during straining, it is linked to the strain rate by the total strain, not the small quantity €,. It affects all
dislocations, even those generated during previous straining and not now mobile; and it may have a considerably
larger saturation strengthening effect.!5¥

A
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FiG. 8. Thermal ACTIVATION of dislocations past solute atoms, at a given concentration, as a

function of applied stress; change of mechanical threshold by increasing the solute concentration on

dislocations through AGING. The combination leads to negative rate sensitivity of the flow stress

over a certain range (heavy line), and inaccessibility of certain ranges during increases (1-2) and
decreases (3-4) of the strain rate.

activated flow stress (o) is scaled by the mechanical threshold (r), and the mechanical
threshold was raised by aging, the ACTIVATION and AGING curves were plotted logar-
ithmically in Fig. 8 and subtracted from each other to obtain the net effect (heavy line).

Under the conditions shown, there is a regime in which aging raises the flow stress more
rapidly than thermal activation lowers it: the rate sensitivity is negative (tetween points 1
and 3 in Fig. 8), when

_alnt
ACT Jlnt

dlno
Jlné

<0 (26)

AGE

where we have labelled the threshold t. (A typical time law is®* 7 = 7, + Ct?/?, so that
the second term is $At/1.) The region of negative rate sensitivity is, however, experimentally
inaccessible in the idealized case discussed here, as has been demonstrated convincingly
by Penning.?® After the stress is raised from zero (sic) to point 1, the strain rate will
immediately jump to point 2. If the stress is then immediately lowered, at point 3, the
strain rate will jump back to point 4. The regime between points 1 and 3 is avoided. We
shall come back to this point later, and only emphasize that discontinuities in strain
rate should be observed when a negative rate sensitivity is expected on the basis of a
physical mechanism. One may say that this is due to the fact that the acceleration
becomes infinite before it becomes negative, since the rate sensitivity goes through
zero (eq. (16)).

We must now incorporate the effects of strain hardening. This is done in Fig. 9. It is seen
that the same type of test, in which the stress is prescribed, will now proceed from point 1 to
point 2 and thence, accumulating some strain, to point 3': in the “valley” of minimum stress,
for which § = 0. From here, if the stress is kept constant, the strain rate must jump back to
point 4, to then proceed along the creep curve b. Thus, the strain vs. time curve would have
to have kinks in it under these conditions: this is called jerky flow—a much more macro-
scopic phenomenon than the jerky glide of dislocations in a slip plane mentioned above.
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A test in which one attempts to keep the (local) strain rate constant would show a more
complicated response. Let us first assume that this prescribed strain rate corresponds to €,,
as at point 1. Then, after initial strain hardening to get the stress to point 1. the strain rate
would have to jump to point 2. Now, if rapid control is possible, the path can go back to
point 3; at constant stress 1t would go to point 3. In either case, continued straining can
now occur in only two ways: very slowly, by following the creep path from point 4 or 4’
along curve b; or still quite rapidly, at increasing stress in the “valley”, at f = 0. The only
way the strain rate can be kept constant at €, is in a time-average sense: sometimes
“creeping”, sometimes “jerking”. This is jerky flow.

Note that, neglecting creep, the amount of strain per jerk is limited. It is

_ g — G(ﬂzo, - AO'_
Ae = ) =5 (27)

where 6, - ¢, is the stress at which the rate sensitivity is zero in the initial state (Fig. 9). This
would be an interesting value to measure for any quantitative interpretation.

If the “prescribed” strain rate is chosen between those corresponding to points 1 and 3, the
forbidden region can be approached, inasmuch as it may be at a maximum in the strain
direction. It is in this way that a negative rate sensitivity can in fact be measured: not really
instantaneously, but comparing approaches at different ¢ to the jerky-flow condition (in the
same state).(34: 6% i

Finally, it must be emphasized that the valley indicated in Fig. 9 may not lie parallel to
the strain axis. It often moves “to the right” in the coordinate system we have chosen to
display Fig. 9. This leads to the observation that jerky flow is often observed only after
some critical strain has been attained. This could well be due to an increase in the mobile
dislocation density with strain, which enters into the scaling factor €, between time and

FiG. 9. Negative rate sensitivity at constant state (between points 1 and 3), combined with positive
strain hardening (points 3-3') leads to jerky flow (point I-point 2) of limited strain (to point 3",
followed by very slow creep (starting at point 4'),
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strain rate (eq. (25)).'% 1968 Additional effects are expected due to the generation of
vacancies during plastic flow,!? and due to an influence of solution hardening on strain
hardening.*¥

3. THE TENSILE BAR

3.1. Strain Gradients and Strain-rate Gradients

Nonuniform deformation may be described by (infinitesimal) differences in behavior
between two discrete volume elements, or by gradients along the bar. For example, the
strain gradient is

[

= ox

= €'(x, 1). (28)

t

Here, x was introduced as the coodinate along the bar. We shall generally imply that the
location relative to the origin of x was chosen such that “localization” is characterized by
€ >0.

What is of foremost interest, however, is not the strain gradient itself, but whether it will
accentuate or attenuate. Its change with time at any one cross section is

x| _a
ot 0x

1]
m.

" 29)

x

t

In words: it is the strain-rate gradient that controls whether strain gradients increase or
decrease; whether nonuniformities tend to grow or disappear.®

A strain-rate gradient may, in fact, have been the cause of developing nonuniformities in
the first place.* !+ '3 For example, it could be the result of a gradient in applied stress (itself
due to a machining defect,*® or to some stress concentrator). At constant stress, a strain-
rate gradient could be the result of some heterogeneity in the material properties, such as
the glide resistance.®® More generally, differences in strain rate can arise by all sorts of
fluctuations.* As we have seen in the last chapter, the strain rate is a quantity that can
change instantaneously (as distinct from the strain); it may be forced to change abruptly by
a negative rate sensitivity.

The most important quantity needed to describe the development of nonuniform defor-
mation is, in fact, the next derivative: the change in the strain-rate gradient.*® This is easily
seen as follows. If the strain-rate gradient decreased fast enough, the strain gradient would
stop growing: the nonuniformity would reach some saturation. On the other hand, when
the strain-rate gradient itself increases (or stays constant), then the growth continues and
may be catastrophic. The change in the strain-rate gradient is equal to the gradient in the
strain acceleration:

o€’ 0€ -

) ") = G0)
Using egs. (17) and (21), this is

e = —E Op- €2 31

€ = — o (0p¢?). (31)

*The equation of state, such as eq. (4), characterizes only the average behavior of the volume elements.

PMS 10 - P
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Here, we have incorporated the equilibrium condition along the bar, namely that the load
(rather than the stress, eq. (18)) is constant. For constant dp. we would get

€=—Q20pé)€ (6 =0 (32)

The important result is that the sign of 5p determines whether localization is bounded or not.
When it is positive (i.e. the slope in a Iné vs. € diagram at constant load is negative),
strain-rate gradients decrease and strain gradients may saturate; when it is negative, local
deformation accelerates and deformation tends to become more and more nonuniform.
For a quantitative description, we will first execute the differentiation of eq. (31) and

divide by é2: !

S+, = — 6.

€ é
This can be simplified by introducing the gradient in the logarithm of the strain rate, which
is also physically more meaningful:

0 0lné dlné ,
% 3 tor —0p. ‘ (33)
Note that “progress” is here more conveniently described by an increase in strain (at that

cross section), rather than an increase in time.
We will use eq. (33) in detail in our discussion of necking in a later chapter; in fact, it was
originally introduced for this purpose, in a slightly different form."'® For a first analysis,

\

de de
ax t ax t
€ (a) (c)

(d)

FIG. 10. Development of strain gradient and relative strain-rate gradient with strain for three cases:
(a) and (b), positive deceleration (6 > 0); (c) and (d), accelerating deformation (8 < 0). Curves I are
for positive strain-rate gradient, such as in a geometric or physical defect or fluctuation; curves II for

negative strain-rate gradient as in a deformation defect,

73
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however, let us here assume that &, is constant during the localization process; this is
reasonable for small strain increments and (note!) when strain-rate differences are small.
(See the discussion on negative rate sensitivity in the previous chapter.) In that case, eq. (33)
has a ready solution:

dlné
Ox

_ dlné

¢ Ox

Y exp(—op€) (6p = 0). (34)

Evidently, strain-rate gradients attenuate with a strain constant 1/§,—or increase
exponentially when it is negative. The strain gradient itself can be obtained by noting
that '

dlné 1 8 d o
ax | T éadx o 9
which gives, integrating eq. (34):
1 Jdlné
€ =€h +— 20 1 — exp(=p€)] (55 = 0). (36)
51: 0x 0

The saturation in strain gradient for constant positive dp can here be seen quantitatively.

Figure 10 displays eqs. (34) and (36) graphically for two special values of the initial strain
gradient and strain-rate gradient that were introduced as integration constants. (Others
will be discussed in section 4.3.) Figs. 10(a) and (b) assume dp > 0, i.e. decelerating creep: an
initial positive strain-rate gradient (curve I in (b)) leads to an increasing but saturating
strain gradient (curve I in (a), for €, = 0). Similarly, when the initial strain-rate gradient is
negative (curves II), any initial strain gradient decreases to a saturation value (usually zero).
A negative value of p, on the other hand (Figs. 10(c) and (d)), makes both the strain-rate
gradient and the strain gradient increase without limit.

Figure 10 is instructive in that it shows how the initial behavior (at zero strain in the
current test) provides very incomplete information; for example, the curves labelled T in
Fig. 10(a) would indicate instability'® in the current state—yet it is a very controiled kind of
instability. (We have avoided using the word “instability” for this reason among others and
prefer to describe the various kinds of behavior in more detail.)

3.2. The Creep Test

In the last section, we have described an elaborate procedure that would, in principle,
allow the measurement of local strain-rates and strain increments. Common tests on tensile
(or compressive) bars measure average values of these variables:

. 1t
észf édx 37

o

for the strain rate, and

1 L
Ags_f Ae dx (38)
L J,
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for the strain increment. Only when deformation is uniform is

dlné

~ = —dp (uniform deformation). (39)
(36 P

Translating this into the actually measured quantities

L=1Lé (creep)* (40)
and |
dinL = de (41)
we get, for uniform deformajtion,“”
6 InL dlné
TmLl, = s |, tl= -+l 42)

The above relations were written in terms of the current length L of the specimen, and
thus refer to “true” strain rates and strains. These are nevertheless average quantities that
reflect material properties only when the deformation is uniform. Similarly, the “true” stress
may be measured, or kept constant, by using the current cross-sectional area (eqgs. (1) and
(2)), assuming this to be uniform. Only then, 4 may be inserted for every &, above, for
constant-stress creep tests, and only then can one use the test characteristic described by eq.
(19) to intersect the material characteristic, as was done for local deformation in Fig. 4.

What does one measure when the deformation is nonuniform? We shall discuss a number
of specific cases in the sections to follow, but will give a general physical discussion here.
Assume, for example, that there is some variation in glide resistance along the sample at
time zero, but that the crossisection is uniform (and there are no stress concentrators). Now
raise the load slowly from zero. The first detectable plastic deformation will occur where the
glide resistance is lowest. If there were no (or negative) hardening in this locality, deforma-
tion would accelerate here—and would never start anywhere else unless the stress is raised
some more. Conversely, when Jp > 0, the local deformation will tend to cease. When one
raises the stress, it will go again—but so it may at other locations: é, > 0 tends to spread
the flow. |

The flow stress mechanism implied by the illustration above was one in which a fixed
(athermal) threshold must be overcome before any deformation can be observed. In most
cases, there is a more gradual relation between flow stress and strain rate, as in fact we have
implied by using a finite rate sensitivity. Then, deformation does not really start at one
locality; it is only more rapid here. Thus, when it decelerates, the strain rate may become
more comparable to that elsewhere, and deformation will become more uniform. We will
now give a detailed description of how one can calculate this process quantitatively.

Let us assume that the initial strain-rate distribution é(x) is known. Then the local
acceleration is (eq. (18), at constant load):

€(x) = —€&%(x)- bp. 43)
By integrating twice over a fcertain time increment At, one can calculate the new distribu-
tion é(x) (for the next step), and the local strain increments Ae(x); integrating these over x

*This equation holds for creep tests only, not in a hard machine (for which see the next section). For a general
definition of € we retain eq. (37).

"
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gives the change in length, AL, according to egs. (38) and (41). Finally, L = AL/At. The
change in local stress follows from Ae (eqgs. (1) and (2)). The procedure is complicated by the
fact that the calculation must be done in constant time increments along the bar, whereas
the local material properties change more nearly with the local strain increment. For this
reason, it is not instructive to perform one of these triple integrations in closed form. In a
numerical integration, it is of course ‘easy, in addition, to incorporate any known depen-
dence of dp on strain rate and stress.

We have seen that it is only the sign of 6, that determines whether flow will localize or
spread, not any dependence of dp on strain rate or stress. A negative value of the decelera-
tion parameter can, however, have very different effects depending on whether it is due to
negative hardening or negative rate sensitivity. In the case of negative hardening, the macro-
scopic creep curve should, in fact, follow the microscopic curves in a qualitative way (curves
bin Figs. 5 and 6). Negative rate sensitivity, on the other hand, will lead to jerky flow on a
macroscopic as well as on the local scale—only that now successive jerks may come from
different regions before the same locality deforms again. Macroscopic strain-time curves
thus should have kinks in them when 8 < 0 (or M < 0).

3.3. Constant Extension Rate and Stress Relaxation

We now turn to hard testing machines, in which there is an interaction between load and
extension: a change in load causes elastic changes in length of both the specimen and the
components of the machine that are between the points at which length is controlled or
measured. The total change in length is therefore

L
L=f ¢dx + SP (44)
[¢]

where S is the actually measured slope in a P vs. L diagram in the elastic regime. (Recall
that € was defined as the plastic strain rate.) It is the combined compliance of specimen and
machine:

S = L/AE + /My 45)

where E is the Young’s modulus of the specimen and M, is the machine stiffness. The
machine compliance is typically about 5 times the specimen compliance in long tensile
specimens, but can be much larger by comparison in compression tests. In any case, the
change in length represented by the second term in eq. (44) is generally small compared to
the first except in stress relaxation tests.

For typical stress strain tests, in which L = const. is prescribed, we can therefore use
eq. (40) rather than eq. (44) and write

klné
0€ |

= -1 (46)

When deformation is uniform, this geometric condition represents a plane in In € —¢
subspace, which may be thought of as intersecting the material characteristic. This construc-
tion is shown dashed in Fig. 11. It is of the same kind as the cut at constant load shown
before in Fig. 4 and expressed analytically by eq. (19).

For the stress relaxation, we must set L = 0 in eq. (44). Expressing load changes by stress
changes (since dimensional changes can here be neglected), we can write

é= —6/E 47)



210 PROGRESS IN MATERIALS SCIENCE

o

FIG. 11. Test characteristics for constant extension rate L (dashed) and for stress relaxation (dotted).
The machine response is negligible in the first case, geometric changes are in the second.
I

where we have used an effective Young’s modulus defined by

1/E = SA/L. 48)
This machine characteristic can be represented as a plane in ¢ — € subspace:

oo -

e, = —E. 49)

Its intersections with the plane é = ¢, and with the material characteristic are shown dotted
in Fig. 11. Since ® < E under all common circumstances, the plane is very steeply inclined
in the figure: stress relaxation measures properties virtually at constant state.5”- ¢ (This is
not necessarily true when time rather than strain effects are important, such as static aging
or recovery.®?) The slope of the stress relaxation curve is therefore quite closely related to
the strain-rate sensitivity. The quantitative relation follows from egs. (6)~(8) and (47):

dlné[ 1
do L B

(1 + O/E). (50)

All the above relations concerned average strain rates and strains. They give insight into
material behavior only when deformation is uniform. Nonuniform deformation exhibits
effects in constant-elongation-rate tests and in stress relaxation that are different in some
respects from those discussed in the previous section on creep.

When a constant elongation rate (or a constant true average strain rate) is prescribed,
there is an intimate coupling between accelerating deformation and its localization; and
between decelerating deformation and its spreading.”® Let us reconsider, for example, the
case in which a structural instability is supposed to have given rise to transient local
softening (Fig. 6, replotted in Fig. 12). The tendency of a local element at point 1 will be to
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FiG. 12. When local strain hardening is negative, the actual path taken (heavy dashed line) depends

on the response of the machine (light dashed plane; characterized by an effective modulus E of

machine and specimen): when the deforming region is narrow, dé/de < 1 and the stress stays nearly
constant (curve b).

accelerate, along curve b. If all elements did this simultaneously, the average strain rate
would exceed the prescribed one, and the stress would drop according to eq. (47). As was
indicated in Fig. 11, this response is quite “steep”; thus, the applied stress would decrease
“more rapidly than the plastic resistance plotted in Fig. 12, and curve a is followed. If, on the
other hand, only one small volume element started its acceleration from point 1, the
macroscopic strain, and thus the drop in applied stress, would be negligible, and curve b is
followed. An intermediate case is illustrated in Fig. 12, where the material characteristic is
intersected by a plane that characterizes the effective machine stiffness E (eq. (49)) converted
to local strain, as it is plotted to the right in the figure. If the length of the deforming
element is w, dé/de = w/L. Inasmuch as the local elements act more or less independently of
each other, the normally expected path should be curve b. When a slow decrease in stress is
actually observed macroscopically, this must indicate a very homogeneous material
behavior: an insensitivity to fluctuations. Classical work softening apparently falls into this
category, and can thus not be explained on the basis of a strain-triggered, local structural
instability.

Just as negative local hardening cannot be observed in a macroscopic stress strain test,
negative local rate sensitivity cannot be observed in a stress relaxation test. What should in
fact happen can be derived by referring to Fig. 9. There we have seen that steady deforma-
tion (when the prescribed strain rate is in a region of negative rate sensitivity) is possible
only in the “valley” corresponding to zero rate sensitivity. Since this is at a higher strain
rate than €, it must be localized. If the cross-head motion is now stopped, only the regions
that are actually deforming will contribute to the stress relaxation—but these can lower
their strain rate only discontinuously (from point 3’ to point 4’ in Fig. 9). Thus, the initial
strain rate derived from a stress-relaxation plot must here be lower than the prescribed
strain rate in the previous test. This is in contradistinction to all usual cases where there is
continuity of plastic strain rates as the machine is switched off.”" Thus, the kinks that
would be observed in creep curves, should be compressed into a single one located before
the beginning of a stress-relaxation curve.
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An apparent negative rate sensitivity might be observed in stress relaxation tests in a very
soft machine: when E < |@| and @ <0 (eq. (50)). Then, the stress vs. time plot will be
convex upward (over the initial region in which © < 0). This would be interpreted as a
negative rate sensitivity if the correction term in eq. (50) were neglected. The condition
E = |©| may be considered the demarcation line between hard (tensile) and soft (creep)
machines.

Localization seems unlikely during stress relaxation in a hard machine, since the stress
decreases so rapidly. For a quantitative calculation (when g = Mg > 0), one must proceed
along precisely the same cumbersome route as for any finite prescribed L, as was discussed
above.

A quantitative calculation of the spreading or localization again demands a triple integra-
tion over time and length, preferably performed numerically as outlined in detail in the
preceding section. The only change due to the changed boundary conditions is that now
one must introduce an iterative procedure to correct the total extension rate (if it came out
different from the prescribed L) by adjusting the load.

3.4. Dynamic Response to a Local Instability

In the two preceding sections, we have implicitly assumed that the phenomena occurring
on a local scale must be in jequilibrium with the boundary conditions; more correctly put:
that there is communication between local events and boundary conditions. The information
transfer required does, of course, take a finite time, governed by the acoustic wave propa-
gation speed, vs. Under usual conditions, this time turns out to be negligible except at strain
rates in excess of about 10251, In jerky flow, high strain rates are indeed attained locally;
we must investigate whether and how this may contribute to the macroscopic behavior.

An acoustic wave is geneljated at a certain cross section if it marks the interface between
regions of different strain r?tes. Let us assume that there is a region w wide (along the
specimen, Fig. 13) that deforms faster than the rest by A¢. Then it displaces the interface
between it and the “bulk” at the rate

Av ~ w Aé. (51)

Since we are only concerned with orders of magnitude in this section, we will neglect
geometric and various other factors and use the symbol ~ for “proportional to and of the
same order”. |

/ . /
' A¢ S Ay

L Vi

L

FIG. 13. When a region w wide suddenly increases its strain rate by A, its boundaries are displaced
by Av = wAé, and acoustic waves are generated.
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As a result of the wave travelling away, the stress drops behind it by!”?
Ag = — E Av (52)
Us

where E is an appropriate modulus. The term E/vs is the acoustic impedance (usually
labelied “pc”, where p is the mass density of the material and ¢ = vs). It is apparent from
eq. (52) that for noticeable unloading to occur, Ac/E and thus Av/vs must be a substantial
fraction of the elastic strain; say, 10™%. We will find that this condition is apparently
fulfilled in the regime of jerky flow.
Inserting eq. (51) into eq. (52) gives us another test characteristic:
do

w
¥'=—Ea. (53)

It is a line of negative slope in the g-¢-plane at the present state (€ — €; = 0). To illustrate its
effect, we repeat Fig. 8 in Fig. 14, with linear axes and two lines drawn in dashed which
have the slope given by eq. (53). They delineate the inaccessible region of the material
characteristic. The important result is that for jerky flow to occur, the (true) rate sensitivity
of the material must now be sufficiently negative. Modifying eq. (26) by eq. (53), the con-
dition reads

dint

ACT h dlnt

dlneo

E W
Jlné

< —- . (54)

AGE o VUs

Note that the stress and the strain rate appear on the right-hand side only because we have
chosen to express the left-hand side by the logarithmic derivatives. In particular, the strain
rate is the one at which the material characteristic is being diagnosed (say, the average
specimen strain rate €), and not the fast strain rate expected in the jerk.

The condition of negative (total) rate sensitivity is usually approached gradually: the
aging term increases with temperature and cften with strain, and decreases with strain rate.
The point at which jerky flow can begin to occur is reached when all three terms in eq. (54)
balance out to zero. The importance of the dynamic response in this balance can be judged
by comparing the right-hand side of eq. (54) with either one of the terms on the left. The first
term, the relative rate sensitivity due to thermal activation is of order 0.01 in most cases.
Thus, the influence of the dynamic response on the balance of positive and negative rate
sensitivities is trivial when

b

== «1072 (55)
o vs
Since E/o < 103, w < L, and L/vg ~ 107357 ! (see eq. (56) below), this condition is always
fulfilled for € < 1 s™!. In practice, the correction should be trivial even at higher strain
rates, since it is in the very nature of the phenomenon that it should be local, i.e. w < L.

A final consequence of dynamic effects to be considered is this: a finite amount of strain
will occur in the unstable region before interaction with the boundary conditions has taken
place. This communication is complete after the acoustic wave has travelled to the ends of
the specimen (where it is assumed to be reflected by the massive grips) and back: in a time
of the order

tp ~ Livy, ~ O(10735) (56)



[2one

214 PROGRESS IN MATERIALS SCIENCE
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F1G. 14. The dynamic respoﬁlse of the specimen (dashed) alters the inaccessible region of a partially
negative stress vs. strain-rate characteristic, and thus alters the criterion for jerky flow. The effect is
derived to be negligible under most circumstances.

The extra local strain increment during this time (if the extra local strain rate Aé remains
approximately constant) is

A€D ~ Aé'tD . (57)

The average strain increment in the specimen comes out to be (egs. (51), (52), (56), (57))
Aep = % Aep = — Ad/E. (58)

Equation (58) is precisely the same as that for stress relaxation at fixed length—in the
absence of dynamic effects. Not surprisingly, then, dynamic effects are negligible at times
large compared to tp, (eq. (56)). The stress-relaxation equation (47) given in the last section
did differ in one respect: it allowed machine relaxation, so that E (eq. (48)) appears instead
of E. Clearly, this involves additional time.

It is sometimes supposed!”? that the returning stress wave can cause the end of straining
during this particular jerk, so that eq. (58) (or one in which E has been replaced by E) gives
the entire strain per jerk. This could be true only if the second local stress drop were to
move the material below the flow characteristic, while the first did not. (In the average, this
effect would double the dynamic correction on the right-hand side of eq. (54).) The strain
per jerk could, alternatively, be limited by strain hardening, as given in eq. (27), which is not
limited to be less than the elastic strains. ‘

In conclusion, dynamic effects seem to be of no consequence on the criterion for jerky
flow (unless the prescribed strain rate € > 15~ !). They may determine the magnitude of the
stress drop, in response to;the magnitude of the strain-rate jump, if the width of the
deforming( is sufficiently large. Then the strain increment associated with the strain-rate
discontinuity equals the elasiic strain released in the entire specimen during the stress drop.

35 Alternative Straining Elements

The most important feature of a tensile bar in connection with nonuniform deformation
is the fact that it contains alternative straining elements: the average strain and strain rate
measured at the ends can be made up of deformation in any or all of them.* In this section,
we shall assume that a fraction of the volume deforms, the rest does not. Even the further

*Since the strains (or compliances) from the different volume elements add, rather than the forces (or resistances),
such an arrangement is often referred to as in parallel, even though the actual volume elements are in series.

i
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Vp <= €>0
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FIG. 15. Increasing the deformed volume fraction: a deformation front travelling at speed vf into the
undeformed region at x < xp.

specialization that the deforming part behaves uniformly covers two realistic cases
adequately.

One way of splitting up a tensile bar into two regions is to assume, in one part, a constant
strain increment Ae. This may be an adequate description of the spatial nonuniformities
generated by jerky flow (see eq. (27) and Fig. 10). If the fraction of the specimen that has
deformed is F, the average strain increment is

Ac = F Ae. (59

This is a special form of eq. (38) for Ac independent of x. (Since the deformed regions may
not be contiguous, eq. (59) is preferable over eq. (38) with an upper limit set at FL instead of
L) If Ae is assumed to be independent also of time (or accumulated strain), the average
strain rate and acceleration are, respectively,

E=FAe (60)
and
€=F A 61

The deformation kinetics is governed by the rate of spreading.

An entirely different way of splitting up a tensile bar into deforming and nondeforming
regions is to say that the strain rate is zero for x < xr (Fig. 15). Then the average-strain-rate
equation (37) specializes to

1 L
é=—| édx (62)*
cl,
and the average acceleration becomes
o UF . 1 J'L I
€= —ép + — édx. 63
Lt (63)
Here, we have introduced the front velocity vy = — X, and the strain rate at the front, €g (to

be exact: the strain-rate discontinuity at the front).
The appearance of two terms in eq. (63) indicates that it is possible to have steady-state
deformation in the bar as a whole (€ = 0) when the local € < 0, i.e. for decelerating deforma-

*We use ¢ instead of L in order to avoid carrying the load-change term along (eq. (44)). In practive, either L or
SP is usually negligible, the other equal to Le (see Fig. 11).
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tion. This is the case of Liiders front propagation, which will be dealt with in more detail in
section 4.1.

Since deceleration is an essential part of front propagation, it would be an inappropriate
oversimplification’? to set the strain rate constant in the deformmg region. It turns out that
a much better approximation is to set the total strain in the deformed region constant
(Ae = €, the Liiders stram) and to use eq. (59) with F = vg/L:

€ =€ vg/L. (64)

A final case, which we shall treat in detail in this section, assumes again that the strain
rate is zero over part of the ‘volume but now that it is constant over the remainder; say, a
fraction f. (Note the difference to F, eq. (59).) Then,

E=fé : (65)
and
E=fé+fé (66)

Here again, it is possible to have zero average acceleration when the local deformation
decelerates: by spreading of deformation (f > 0).

The physical situation described by this formalism is that of an increasing mobile dis-
location density (setting f = b”p,,), and a decreasing dislocation velocity (setting ¢ = v,/b).
The result (which is well known’?-¢9) is especially interesting in the present context: creep
(Fig. 16(a)) accelerates during an “anomalous” transient, goes through a stationary state
(€ = 0), and finally decelerates normally under the dominating action of hardening pro-
cesses (0 > 0). Equivalently, in a constant-é-test (Fig. 16(b)), the stress first decreases (during
a slow yield drop) and then increases again.

The transients just described are associated with completely stable deformation and are,
in fact, a consequence of locally decelerating deformation: only then is there any reason for
additional volume elements to deform (mobile dislocations to be generated). Note that the
new volume elements that deformation spreads to must deform at the then prevailing strain
rate (it was assumed independent of x); they must have been affected by the strain hardening
that went on before. This could be true when the density of mobile dislocations increases
everywhere in the specimen; it would be hard to understand, however, if deformation spread
into entirely new regions. (That is why we studiously avoided talking about a length fraction
that deforms, in this last case) We see, again, that a macroscopically observed (finite)
negative hardening rate is ev1dence for homogeneous deformation.

4, MODEs OF NONUNIFORM DEFORMATION

- 4.1. Liders Front Propagation

Many solution hardened alloys tested in a regime of relatively low temperatures, display
the initial yield behavior 111ustrated in Fig. 17. Deformation begins, usually at a grip end, at
the upper yield stress ay,. The stress then 1mmed1ately drops to the lower yield stress o, and
deformation spreads along the whole specimen at essentially constant stress. (Under some
circumstances, the plateau is serrated, as in Fig. 17(b); see the next section.) Finally, a




KINETICS OF NONUNIFORM DEFORMATION 217

€
. ]

(a)

-1
g
ﬁi

(b)

— €

F1G. 16. Increasing deforming volume fraction: anomalous creep (a) and negative hardening (b) are
observed in macroscopic tests, even though local material elements are continuously decelerating/
hardening.

strain-hardening curve is followed that appears unaffected by the yield phenomenon: it is
the same, for example, for specimens in which the yield behavior was deliberately altered."®

The common interpretation of this phenomenon is that an initial generation stress o, is
required to break dislocations loose from solute atmospheres acquired during annealing.!®
The macroscopically measured upper yield stress may be lower than g, because of stress
concentrators; in fact, it is not very reproducible. The lower yield stress (which is much

o | o
o, -~
q
O'U- \a’/_
O'L ,’/I
AN
& |
|
; _
. €,

(a) (b)

FIG. 17. A sharp yield point. and its recurrence after straining and aging (a); (b) another form of the
phenomenon, not treated here.
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more reproducible) corresponds to the stress necessary to propagate the deformation front
through the specimen. Subsequently, the specimen deforms uniformly.

The presumption in this model must be that, had there been no difficulty in getting the
dislocations started initially, deformation would have been possible at an initial friction
stress o4, and would then have taken place uniformly throughout the specimen. This would
suggest that a back-extrapolation of the stress strain curve from the homogeneous regime to
strain zero would give the value of o,. Back-extrapolating is relatively easy when yielding is
followed by strong (and more or less linear) strain hardening. It would be problematical
when the stress strain diagram is strongly curved, such as that shown in Fig. 17(b).
Figure 17(a), at larger strains, shows an elegant way'’® to establish o,: as the endpoint of
some predeformation into the homogeneous regime, followed by aging (at a temperature
where solute dislocation locking saturates, but dislocations don’t recover), and retesting.

The fact that deformation during the yield plateau occurs at a stress higher than the
friction stress, must mean that it occurs faster than the prescribed average strain rate—and
this is consistent with the observation that it occurs in only part of the specimen. The
situation may thus be well described by Fig. 7, for each deforming cross section: when it is
initiated into deformation at an “overstress” (corresponding to point 2 in the figure), it must
deform at a high strain rate, and then decelerate continuously, until it (more or less) rejoins
the stress strain curve for the homogeneous material.

The stress o, at which th1s process takes place is lower than the generation stress. Its
derivation is a major task facmg a quantitative treatment of this phenomenon, and the
problem does not appear to have been solved satisfactorily. In the following, we shall derive
a number of interrelations between the various quantities that are measurable, and we shall
find them to be one too few‘z” Thus, but a single physical assumption need be made to
describe the phenomenon fully

Two relations are obvious from the figures already presented. The excess of the lower
yield stress over the (hypothetical) friction stress must be related to the strain €, associated
with the plateau by the strain-hardening rate @:

O, — 06 = @GL (67)

and to the initial (maximunfn) strain rate é; by the rate sensitivity §:

oL — o, = B In e ~ (68)

These are two equations betjween three unknowns. (ay, €., €5). While the strain ¢, at the end
of the plateau must clearly be a consequence of the stress level, there is no such obvious
- cause-and-effect relation between the excess stress and the excess strain rate.

We have seen that the strainrate is not uniform. Let us first concentrate on any one cross
section that does deform. If the strain rate begins at a value ég, it must decelerate at
constant stress (or load) because of local hardening. Simple integration of eq. (18) gives the
relation between strain rate and time at any one cross section:

11

———=24-t.

€ €f (69)
This is plotted in Fig. 18(a) (thin line). After some time, the strain rate has decreased to the
prescribed average strain rate €, and from then on straining will continue even more slowly.
It is common to label deformation at é < € creep and neglect it, even though it is merely the
continuation of the ongoing process. The heavy line shows this approximation graphically.

@

©w
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FiG. 18. Decrease of strain rate (a), and increase of strain increment (b) with time when & = const.

(thin lmes) Only when strain rates below a certain limit (such as the average strain rate ¢€) are

neglected is the strain limited (heavy lines). Then, steady-state front propagation is possible, and

these figures also represent the spatial distribution as a function of the distance from the Liiders
front, X.

It must be emphasized that Fig. 18(a) is not drawn to scale: for the typical values of
(oL — as)/o ~ 0.1 and B/oc = M ~ 0.01, one would get épfe ~ 10* (eq. (68)).
A further integration of eq. (69) over time gives

Ae = % In(l + Jért). (70)

This is classical logarithmic creep'’: a direct consequence of the assumed constancy of 6,
i.e. of both the strain-hardening rate and the rate sensitivity (eq. (16)). It is illustrated in
Fig. 18(b): the thin line. The strain increases without limit. When the strain rate has
decreased to €, Ac has reached a certain value, whose identification with the previously
defined ¢; will need to be discussed below. Neglecting “creep” would be expressed by the
heavy line.

Realistic creep laws are generally faster than logarithmic creep; e.g. the curve labelled
ANDRADE"? in Fig. 19. At the low strains we are concerned with here, logarithmic creep
(which plots as a straight line on this diagram) is in fact a realistic approximation. Using it
for the “overstress” regime, but neglecting deformation in the range é < €, gives the heavy
line. Finally, Fig. 19 shows “exhaustion creep”: it truly saturates at a finite strain. In Figure
18(a), it would have plotted as an exponential, rather than inverse, decay with time, and in
Fig. 18(b) as exponential saturation to €. This type of law has, in fact, been used to describe
deformation in Liiders bands since Hart;?! it corresponds to assuming (0¢/de) constant,
rather than the logarithmic derivative, and is quite unrealistic.*

*In a previous treatment,'*® we inadvertently made the same assumption by an inappropriate approximation in
integrating eq. (64e). For this reason, egs. (64f) and (64g)"*®' are wrong: ¢, should there be divided by In(éf/€) = 10.
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In('f/eT)

F1G. 19. Creep laws. Normal primary creep decelerates qualitatively as in the curve labelled

ANDRADE. Constant ¢ is LOGARITHMIC creep: a good approximation for small strains. The

heavy line represents the relation assumed here. EXHAUSTION creep is physically limited in strain
and usually not realistic.

Since deformation decelerates in each cross section, it must spread to other regions of the
specimen to maintain a constant average strain rate. A particular mode of spreading is
observed to be always associated with this form of yield point: namely, the propagation of a
Liiders front. (The term “Liiders band” is sometimes used for the deformed region behind
the front, but sometimes-also for a small region of deforming material limited on both sides.)
It is not clear what material characteristics lead to this particular form of nonuniform
deformation, as we will discuss in somewhat more detail below.

For now, we shall assume steady-state propagation. (We have shown in eq. (63) that such
a solution exists.) If the current position of the front is x; and the propagation speed is v,
the entire behavior can then be described in terms of the parameter

X=x—xp+upt (71)
and there is, at every point, a connection between the strain rate and the strain gradient €’
‘ € =¢€ v (72)

The time profiles of the stfain rate and the strain shown in Fig. 18(a) and (b) now become
distance profiles also. If we assume the heavy lines (neglecting creep), we find that there is a
finite zone in which deformation is taking place at any one time, and at its end, Ae = ¢,.
The width w,, of this zone c:an be derived from eqs (67), (68), (70), and (72) to be

| wi/L = In €ép). 73)
The average strain rate follows simply from eq. (60) (see eq. (64)):
E = € UF/L. ‘ . (:74)

For typical values of € (~1072 s™'), ¢, (~1072), and L (10 mm), this gives front velocities
of order 0.1 to 1 mm/sec.

Let us now consider the effects of creep, i.e. the more realistic material behavior illus-
trated by the thin (solid) lines in Figs. 18 and 19, a1 € < é. Inasmuch as straining is still
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Fi1G. 20. Definition of the Liiders strain when the assumptions used here are consistently applied.
The final drop in load is probably due to an end effect; the sharp raisc may be due to creep in the
deformed region.

going on everywhere behind the front, the average strain rate would have to continuously
increase if (a) the front propagated at constant speed, and (b) the stress remained constant.
If € = const. is considered a boundary condition, then either the stress must decrease, or vp.
Neither effect is observed, presumably because it is so small. However, one effect that is
observed may possibly be due to this material characteristic. It is illustrated in Fig. 20. At
the end of the Liiders strain regime, there is a fairly abrupt, small increase* in flow stress,
which we have neglected in Fig. 17, before the “normal” stress strain curve is rejoined. This
might correspond to the fact that the whole specimen was deforming at a low (creep)
strain rate, and is now suddenly forced to proceed at the prescribed €. If this is so, back-
extrapolating the normal stress strain curve to the stress plateau would now operationally
define the Liiders strain €; as shown in Fig. 18(b), and the small amount of strain accumu-
lated after €, in the plateau would be due to slow creep.

Finally, we will address the question, what material characteristics may be responsible for
the Liiders mode of nonuniform deformation. It is clear that a high generation stress forces
a high initial strain rate, and that this implies either localized deformation or severe unload-
ing; since generation is likely to be a heterogeneous event in the first place, localized
deformation can be easily rationalized. Further, the decelerating characteristics of the
material must lead to spreading of the deformation along the specimen—and they leave the
material in an (almost) homogeneous state (Fig. 7). But why does the spreading occur in
such an orderly fashion as by the propagation of a front; and why does it occur at a
particular stress which, while being higher than the friction stress is also lower than the
generation stress?

These questions have to be answered on the basis of some physical mechanism. Many
authors imply that there is an innate propagation stress (for front propagation, not dis-
location propagation), possibly connected with the front velocity; but no structural reason
for such a material property appears to have been given. In general, any one further relation
between the various unknowns introduced above would make the problem determinatef—
but it should also answer the qualitative question of why there is orderly front propagation,

*This follows on a small decrease, which can be explained by the front running into the far grip.

T By 2002, significant progress has been made in this area [L.P. Kubin, C. Fressengeas, and G. -
Ananthakrishna, “Collective Behavior of dislocations in plasticity”: in Dislocations in Sokds 11,
Fdited by FR N Nahatro and M S Diecherry (Narth_ I aland 2002\ n 101_.1021
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and not successive generation at random places. Why is it easier to generate new dis-
locations near a region that has already deformed?

One approach to this question is based on the presumed existence of stress concentrations
at the front. For example, a fairly sharp change in area must establish itself at the front, and
this could lead to stress concentrations at the two ends of the current band. This hypothesis
has been disproven by experiments in which the specimen was remachined after the front
had passed along half its length: after reloading, the front continued where it had left off
before. On the other hand, a similarly half-deformed spemmen that went through an inter-
mediate anneal, started a ncw Liiders front at the grip end upon reloading (even if it had
not been remachined).!® |

The latter experiment clearly indicates that it must be a structural feature that defines the
front. If it were in the natujre of an internal stress concentrator, it would have to have a

“wavelength” that is structurally determined (since the average internal stress across the cross
section must be zero). The grain size might be a suitable candidate for such a parameter—if
it weren’t for the fact that smgle crystals also show Liiders front propagation under similar
circumstances.!” *

Another approach to the problem may be the most promising: to think of the front as a
place where (unlocked) dislocations are injected into the as yet undeformed region.”® Even
locked dislocations may be freed by the high internal stress peaks associated with passing
dislocations. In this model, there would have to be a fairly close correspondence between
the front velocity vp and the dislocation velocity v, Taking them both to be of order
1 mm/sec, and é ~ 1 sec™!, would require a mobile dislocation density p,, of order 10°
cm~2, using

€=py,buv, (75)

If p,, were a given material property, eq. (75) would provide the missing relation. This
hypothesis would predict that a specimen which was heavily cold-worked and then aged
should, all other parameters being equal, exhibit a lower front velocity and smaller excess
stress. Most significantly, this theory would suggest an intimate connection between the
kinetics of front propagation (vg) and of later uniform straining (€), since both are propor-
tional to the dislocation velocity. Such a similarity in kinetic behavior has often been
observed.”?

Until now, we have assumed that the steady-state solution of front propagation is actually
realized. A check on this assumption can be made by deliberately disturbing an assumed
steady state and ascertaining whether at least the system will then return to steady state.
This check turns out affirmative; for if the propagation velocity is raised (keeping every-
thing else the same), the average strain rate increases (eq. (74)); thus, the load must drop
(eq. (44)), which will decrease all rates, including that of front propagation, if indeed it is
controlled by the dislocation velocity. This feedback mechanism relies on a positive rate
sensitivity and works the better the larger it is. Solution hardened alloys are (next to those
controlled by lattice resistance) the most rate sensitive of all materials, in this low-tempera-
ture regime.

Lastly, let us discuss the possible influence of a dynamic response in the specimen, due to
the strain-rate discontinuity when deformation starts. In principle, this could determine o,

*Another possibility is that the strain gradient cannot exceed some critical value, such as €. /d, where d is the
grain size ot the slip plane spacing. This would establish, with eq. (72), an additional relation between the strain
rate at the front and the propagation velocity. In general, if the strain gradient entered into the material constitu-
tive laws in any way, vy could be derived from eq. (72).
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by being a certain Ao below o, (even though this difference is not observed to be very
reproducible). The order of magnitude of this effect can be estimated from egs. (51) and (52):

Ao = —E'Wép. (76)

Us

The width w to be used here should be of order of the width of the front defined by

Wp = € /e an
which, by virtue of egs. (72) and (74), equals L/ér. Thus,
Ac/E ~ —L/vg (78)

which is of order 10~ and thus much too small. Of course, even if this explanation held for
the stress, it would not be able to rationalize the orderly progression of the front.

4.2. Jerky Flow

In an intermediate temperature range, some solution hardened alloys exhibit a phenom-
enon variously called jerky flow, serrated flow, the Portevin—-LeChatelier effect or, by the
assumed mechanism, dynamic strain-aging. Stress strain curves (at constant extension rate)
show repeated load drops of various kinds, which are illustrated in Fig. 21. They have been
classified"” into the types A, B, and C, all of which are fairly regular; in addition, there is
an irregular kind of slow load-drop behavior (Fig. 21(d)), which is sometimes called “jerky
flow” in a narrower sense. We will refer to all these phenomena as jerky flow.

As indicated in Fig. 21, jerky flow often commences after a finite amount of prestrain; also,
it often ceases at large strains. The strain range for jerky flow depends on temperature and
strain rate. Under some conditions, jerky flow occurs simultaneously with (initial) Liiders

front propagation; then it is called “serrated yielding” (Fig. 17(b)). by po Siited

It has been pestulated>® that a negative rate sensitivity of the flow stress fif always
associated with jerky flow. Measurements of negative rate sensitivity are difficult, as we
have indicated above, and are therefore scarce. The most fruitful approach is to investigate
the rate sensitivity as a function of strain: one finds that it decreases toward zero as the
starting point of jerky flow is approached, and it becomes more positive after jerky flow has
ceased. Figure 22 shows the rate sensitivity § as a function of the flow stress reached during

(a) (b) (c) (d)

o

F1G. 21. Types of jerky flow. We primarily address type C.

out

s
be
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FiG. 22. Strain-rate sensitivity § and flow stress ¢ as a function of prestrain. Normal solution

hardened allows follow curve a; all others exhibit dynamic strain-aging, although jerky flow is only

observed when the (total) rate sensitivity is negative. This occurs after a critical strain in curves ¢ and

d, which is virtually zero in curve e. Dynamic recovery is proposed to be responsible for the eventual
rise in rate sensitivity, and thus for the ceasing of jerky flow.

the prestraining.*# Curve ¢ exhibits the behavior just discussed. It is obvious that even if
the portion of the curve at f < 0 were not actually observed, it could be inferred by
interpolation. Changing temperature, strain rate, or solute concentration can change the
behavior either towards curves d and e, or towards curves b and a. Curve a is typical for a
“normal” solution hardened alloy, i.e. outside the regime of dynamic strain aging:®°® the

initial rate sensitivity is due to the friction stress, the (mild) subsequent increase is due to

dislocation forest intersection, and the stronger eventual rise is due to dynamic recovery.*?

If all the other curves in Fig 22 are treated as departures from this “normal” behavior, the
difference is a negative contrlbutlon to the rate sensitivity that increases with prestrain. Such
a negative contribution is| ‘associated with dynamic strain-aging by one mechanism or
another.(!% 34 In this interpretation, curve b would then show evidence of dynamic strain
aging, even though the total rate sensitivity is not negative and jerky flow is never
observed.¥

In summary, then, the physical mechanism underlying the observation of jerky flow
(Fig. 21) is presumed to be as follows: dynamic strain-aging, which is effective over a certain
range of temperatures and sirain rates, makes a negative contribution to the rate sensitivity,
which increases with prestrain; when it has become dominating (at the “critical strain”),
jerky flow begins; jerky flow ceases if and when, in the given temperature and strain-rate
range, dynamic recovery becomes sufficiently important at large strains.

We have seen in sectlon‘ 2.7 that a negative rate sensitivity is bound to cause abrupt
acceleration. The question is now whether, or under what conditions, such time-discontinui-
ties in strain rate, which we had already labelled “jerky flow”, lead to space-discontinuities,
i.e. localized flow, and to load drops in a hard machine.

Figure 9 showed the material characteristic for dynamic strain-aging on a local basis.
Figure 23 presents a section through it for a particular stress path (not necessarily constant).
It illustrates that jerky flow in each material element consists of three stages: an initial
(positive) strain-rate discontinuity (point 1 to point 2); followed by decelerating accumu-

"
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F1G. 23. Appropriate cut through the material characteristic for jerky flow. The strain rate will
change dicontinuously (from point 1 to point 2); strain is accumulated during decelerating deforma-
tion (to point 3'), and then ceases. The final strain rate exceeds the average strain rate (at point 1).

lation of plastic strain until the condition § = 0 is reached (point 3'); and then an abrupt
arrest of deformation or, more exactly, a discontinuous change to slow creep, which is here
neglected.

In a creep machine, at constant stress, the local strain increment is immediately given by
.eq. (27): it is dictated by strain hardening and the depth of the valley, Ag_, in the stress vs
strain-rate characteristic. In principle, this strain increment could occur in the whole speci-
men at the same time. In practice, however, there are likely to be small variations along the
specimen length so that the fluctuation will occur in one small volume element first; e.g.
near a grip. Then, the stress may have to be raised slightly to activate the next element, or
alternatively a deformation front may propagate along the specimen at constant stress.
When the entire volume has experienced the strain Ae, no further deformation is possible
until the stress is raised and the process starts over.®® It is the essential difference between
Liiders front propagation and jerky flow that in the former, completed band propagation
leaves the material free to deform homogeneously, whereas after jerky flow the material is
returned to the jerky-flow condition.

Why and under what conditions deformation should progress orderly by front propa-
gation is an open question, just as it was for Liiders bands. For the subsequent fronts in
jerky flow, the unidirectional progression may be a consequence of a strain gradient built
up by the first front.?®

In a hard machine, the stress is not necessarily constant: it may be driven down if, for
some physical reason, the actual plastic extension rate exceeds the prescribed extension rate
(eq. (44)) or, dynamically, if there is a strong local strain-rate discontinuity (eq. (52)). One or
the other of these effects has been deemed to be responsible for limiting the local strain
increment.>*- 72 We hold this to be unlikely, inasmuch as the stress drop due to either
effect is proportional to the width of the deforming region and this would have to be a
substantial fraction of the specimen length to be of any importance. It is not clear why such
a large region should deform uniformly, and what determines its size. We will now present
an alternative analysis that assumes deformation to start in a very thin sliver and spread
from there. In this case, it will turn out that the interaction with the machine determines the
distance the front will travel, which is the effective band width w.

The amount of deformation i§ a small volume element (or even a single slip plane) is not
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limited by the machine response but by strain hardening (eq. (27)). If deformation now
spreads into neighboring elements with a propagation speed v (this is the ad ho¢ assump-
tion), the applied stress will drop at a rate & given by the difference between the plastic
extension rate Ae-ur (eqgs. (37) and (64)) and the “prescribed™ one. L. After the front has
progressed a distance w, the stress will have dropped by (egs. (44) and (48))

; wo, - LY w
A%a=;— a——E( )L' (79)

l.‘F

It is seen that at a partlcular front velocity tr = L/Ae there would be no stress drop. On
the other hand, when vp 1s very large, the stress drop is equivalent to that in a stress
relaxation experiment. The crucnd] observation now is that when the stress has dropped to
the “bottom of the valley”, jthe front must stop:

|Ac| < Ao (80)

(This condition could be vio!ated by the effect of a stress concentration at the front.) In fact,
since the stress drops in proportion to the distance the front has travelled, the overstress
decreases linearly, and Ae decreases linearly to zero. Thus, the average strain in the band is
half Ae, and the band width§ w follows by insertion into eq. (79):

| Ao_ w20

Aezi'ﬁ, z~ —E_v. (81)

Since typically © < E/50 (whlch it is at small strains and low temperatures) and E ~ E/5,
the band width is less than about 1/5 the specimen length. Values of order 1/10 are typically
observed.3®

After the band has thus been arrested, another one can start either adjacent to it®®
(“hopping band”%), or randomly along the length of the specimen."” In either case, no
significant stress increase is expected until volume elements must be strained a further time.
Such plateaus have sometimes been observed; more often they seem to be smoothed out,
possibly through the mtroductlon of a strain gradient along the specimen.?® This sequence
of events appears to characterize the observed type-C bands quite well (Fig. 21). Bands of
type A and B may well be due to a smaller intrinsic front velocity, according to eq. (79).

The question remains, what controls the front velocity. As in the case of Liiders front
propagation, it seems plausible to postulate that it has some connection to the local strain
rate (or to the dislocation velocity”® 89). In that case, v ought to be the larger the more
severe is dynamic strain aging. This concept is in accord with the observation that, as the
most critical strain and temperature ranges are approached, the serration type progresses
from type A to type C. (Type B is classified as an intermediate stage, but somewhat
differently by different authors (17.36))

Finallly, a word about dynamlc effects. In all of the above discussion, we have assumed
that communication along the specimen is rapid enough for dynamic effects to be ignored
(section 3.4). This means, first, that vr < v,, which is certainly expected. More stringent is
the assumption that the timeirequired to strain an individual cross section is longer than the
time t;, for the round trip of ‘elastic waves to the end of the specimen: Ae/Aé > 1, With a
strain increment of order 1%, and tp of order 1073 s (eq. (56)), this would require local strain
rates less than. 103 s~ !, which sounds reasonable. However, on a scale of individual slip
bands, the condition may be violated and lead to a significant influence of dynamics.("?
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4.3. Necking

The most common form of flow localization in all ductile materials is that occurring near
the end of a tensile test: the development of a neck. In first approximation, it is the result of
a geometric instability (eq. (19)): when the rate of work hardening becomes less than the
relative rate of area decrease with strain in a tensile specimen, H (eq. (9)).

H<1 (82)

deformation accelerates at constant load (eq. (22)):
op < 0. (83)

It accelerates more wherever the strain rate is already larger (eq. (43)); thus, strain-rate
gradients (and therefore strain gradients) tend to accentuate (eq. (32)). Equation (82) is called
the Considére criterion.!” Equation (83) is more general in that it also holds for compres-
sion and other cases of area-change vs. strain relations.

In a creep test at constant load, the critical condition ép = 0 (eq. (83)) coincides, by
definition, with the minimum strain rate. Even in a creep test “at constant true stress”
(assuming uniform deformation, that is), the conditions (82) and (83) can be reached; how-
ever, the value of (—9), the slope of the In € vs. € diagram, is still negative at this point.

In a tensile test “at constant true strain rate” (if the deformation were uniform), the
equilibrium condition of constant load along the specimen coincides with the condition of
zero load change with strain: the point of maximum load or the ultimate tensile strength
(UTS). At constant extension rate, the condition is modified slightly.®’*

In conventional treatments, the Considére criterion (with or without Hart’s!® modifica-
tions) is considered to be the demarcation line between “stable” and “unstable” deforma-
tion. This is strictly true only, when a particular (and, we think, unrealistic) defect is
assumed to be present in the specimen. We shall show below that the particular formulation
we have given above (eq. (83)) in fact allows for (realistic) instabilities long before the
Considére criterion is reached—but that, on the other hand, the condition dp ~ 0 has a
much broader significance: only as it is approached can localization become severe. Follow-
ing this discussion, we shall address the question of the rate of neck development.

As distinct from the other modes of nonuniform deformation, which start abruptly and
then decay (at least temporarily), necking develops slowly, with sometimes considerable
accumulation of strain. It is for this reason that area changes, and the resulting stress
changes, become important. The distinction between é and §p was already a consequence of
this effect. We shall now account for it in a more explicit fashion. Following our earlier

_treatment,!® we define the relative gradient of the cross-sectional area, which is always

(eq. (1)) linked to the relative gradient in stress, by

=61nA
T ox

dlno

Y —
‘ 0x

(84)

t

For tension (eq. (2)), it is also equal to the negative strain gradient, plus an initial area defect
Yo:

Y=-€+ Y, (tension) (85)

* Another small modification appears in Hart's'® paper, because he considered the accentuation of absolute area
differences. (See footnote to eq. (21).)
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Its change with strain is then related to the strain-rate gradient (eq. (35)) by

aY
O

_6lné

= 3 (tension) (86)

!

Thus, the differential equation for the development of strain-rate gradients (eq. (33)) can
now be expressed as ]

o2 .
65_2, + 4, %E)—, = J, (tension) 87)
with the integral (eq. (36))
1 dne¢ y
Y=Yt 5| M -exp(=50] 6 =0) (88)

This is different from eq. (36) in one important respect: it allows one to specify as one of
the integration constants an initial area gradient Y, (instead of a strain gradient). We
will discuss this type of initial condition as the first in a number of “defects”.

A geometric defect (or machining defect) is characterized by an initial (relative) area
gradient (eq. (84))

_ dlnAo
T dx

(The location of the defect with respect to the origin of x is again chosen such as to make
localization correspond to positiue strain and strain-rate gradients, as in eq. (28)—see eq.
(85).) This area gradient causes an initial stress gradient — Y, (eq. (84)) and therefore (if the
material is homogeneous) an initial strain-rate gradient (eq. (10))

dlné
0x 0

Y,

< 0. 89

= — Yo/M > 0. (90)

Inasmuch as this strain-rate gradient is positive, it will accentuate the relative area gradient
even when ép > 0, i.e. before the Considére criterion.®? If one looks at small differences
only and therefore neglects gradients in the material properties (the right-hand side of eq.
(87), the development is described by eq. (88): while the strain gradient does increase, it
saturates exponentially. Thus, deformation is “unstable” against area variations—even
though it is bounded. ;

A very similar situation obtains when the area is completely uniform, but the material is
heterogeneous (a physical defect): if the glide resistance is lower somewhere, then the strain
rate will be greater there at the same stress. Equivalently, one may assume a fluctuation in
strain rate. In this case, Y, = 0, and the initial strain-rate gradient is an independent
constant; however, the development is then the same as for the geometric defect. Thus, we
have plotted them together in Fig. 24, as €’ vs. strain. This is similar to curve I in Fig. 10(a),
but is now shown for four different values of the deceleration parameter 8p: 10, 1, 0, and
— 1. (Note that typical values at small strains are of order 103)

Figure 24 demonstrates that the severity of the instability increases drastically as ép
decreases. In fact, the precise condition dp = 0 becomes almost academic: even if the
geometric area change could be neglected (or were opposite, as in a compression test) will
strain-rate gradients persist for a long time, and strain gradients grow, when the hardening
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10

- €

FiG. 24. Development of the strain gradient € with strain, for a constant initial fluctuation in strain

rate (initial slope in this diagram) which could have been due to a negative initial area gradient. Only

when the deceleration parameter is negative is localization unbounded:; but small positive values
cause considerable strain gradients to develop over large strains.

rate becomes low. A general condition for high localization resistance may thus be written as
o> 1 o1

where the boundary-independent material parameter & serves just about as well as the
(more proper) quantity Jp. (Note again that this is the local property, not necessarily the
slope of the macroscopic creep curve, say, when dislocation generation is important.)

In the above examples, the Considére criterion signalled the demarcation line between
bounded and unbounded growth.!'® not between stable and unstable deformation.’”” The
latter can be obtained in a different type of defect; namely, when the initial strain-rate
gradient is negative. In particular, this is the case when one assumes that a certain cross
section has had more deformation: while this makes its area smaller, it has work hardened
enough to make the total effect on the strain-rate gradient negative:3%- 13

Yo = —€p; NP — Op€yq. (92)
The resulting behavior was illustrated in Fig. 10 (curves II), for dp = const. It is also
reproduced in Fig, 25, for four different values of dp: 10, 1, 0, and — 1. Again, the behavior
for 3p < 1 is of a long-term nature in any case, but for é » 1, it is strongly damped (eq.
(91).

This deformation defect cannot properly be considered the result of a fluctuation: the
strain (as opposed to the strain rate) cannot change instantaneously. It has been called a
“hammer blow™3%-- but it would correspond to a very special hammer blow indeed: one
that causes uniaxial extension at the same rate as the previous uniform deformation. In
conclusion, we hold this defect to be an especially unrealistic one; moreover, it is especially
safe. Thus, the Considére condition is not an adequate criterion for (in)stability.

The most important result of these considerations, which dealt with the rate of develop-
ment of nonuniformities, not just with yes/no criteria, was that much strain gets accumu-
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>~ €

F1G. 25. Development of the strain gradient €’ with strain for a deformation defect (characterized by
a constant initial strain gradient €/, and an initial relative strain-rate gradient —é-¢’,). Growth occurs
only for 8, < 0 but decay is slow for small positive values of the deceleration parameter.

lated during changes when dp is small. For this reason, it was here actually not justified to
assume the material properties constant. For example, if one begins at a prestrain just
before the Considére criterion has been reached, one will exceed it soon. Thus, one would
have to pass from the bounded-growth case to the unbounded-growth case; yet all the
curves shown in Figs. 24 and 25 are monotonic. Figure 26 illustrates qualitatively what
should happen, for both a geometric defect and a deformation defect. The curves have two
branches:!3- 8D they are integrals of a second-order differential equation. This is precisely
the equation we have derived (eq. (87)), when the right-hand side is not neglected, as will
now be demonstrated in detail.

We shall assume dp to bé a function of ¢ and o. As was discussed at length before, this
would be a unigue function,|if but one parameter were necessary to specify the mechanical
state of the material (if an equation of state existed). Otherwise, the function is path depen-
dent—but the parameter 5z was chosen precisely because it is specified along the path of

Y

FIG. 26. Qualitative development of the relative arca gradient for a geometric defect and a deforma-

tion defect, when the initial value of §p is positive but small, e.g. near the UTS. The two branches are

described as solutions of a second-order differential equation, which has been derived on the basis of
realistic constitutive laws.
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interest. (It can only momentarily be replaced by (H — 1)/M, eq. (22).) The gradient of dp
then becomes

0op| _ 00p | Olné 06p | dlng ©93)
x|, 0lné€l, ox |, dlne|, 0x |,
If we define the variations of d, (with a sign that makes them normally positive) by
_ 00p
T dlné|, ©4)
and
- _ 00p (95)
dlnal,

the general differential equation for the development of nonuniform deformation becomes
(egs. (33), (21) and (84))

Jdlné

i dlné
O Ox

Ox

_ ldlnA_calnA

_ . 96
¢ M de ox | 46)

+ (0 +b)

Here, we have kept area gradients distinct from strain gradients, in order to be
independent of the tensile test.
For tension (egs. (85), (86) and (22)), we get

7Y . aY

This equation was first introduced"® in a slightly different form: then path independence in
a (o.€)-description had been assumed (the glide resistance being the only state parameter)
and, furthermore, M had been assumed constant. In that case '

Y Y

M-— H—-—1+B)—-CY=0 98

PRl + B) 2 € (98)
where B and C are partial derivatives of H with respect to In€é and (— In o), respectively.
The connection to the new (and preferable) coefficients is

B .dIn M

b= — -9 99
M dlné€ |, ®9)
and
C dinM
= — 4+ 06— 100
¢ M 6lna€- ( )

The most important feature of eqs (97) and (98) is that the last term is negative. In the
case of eq. (98). this was previously shown'® to be a consequence of the fact that stress
strain curves are usually convex upward (C > 0). For the more general case of eq. (97), it is
demonstrated in Fig. 27: at higher stresses, deformation (is faster and) decelerates less. This
is especially evident at the minimum creep rate.
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In€

€

FiG. 27. Typical creep curves for two different constant loads. The fact that the deceleration par-
ameter dp (the magnitude of the slope in this diagram) decreases with increasing stress (at constant
strain rate) causes eventual unbounded nonuniformity of deformation to be a necessity.

The consequence of the negative sign in eq. (97) is analogous to having a negative
restoring force in an oscillator: the “displacement” Y must eventually increase without limit.
Thus, all tensile deformation (for which the parameters in eq. (97) are positive) must even-
tually become nonuniform, and unboundedly so!

The two branches of neck development can now be specified in a somewhat more quanti-
tative way by inspection of eq (97): it involves two “strain constants”; namely, the ratio of the
coefficients of (9%Y/de?) and (0Y/0e) for short-term behavior; and the ratio of the coefficients
of (0Y/ée) and Y for long-term behavior.! ¥ The first is almost the same as we had seen
before: 1/(8p + b) instead of 1/8,. The second is of special interest when &, = 0; then,

b dlne

¢ Olnél;

N. (101)

This is an unusual rate sensitivity: viz., at constant deceleration.* For the case dp = 0, 1/N
is in fact the stress exponent'in a power-law expression for the minimum creep rate!

The long-term behavior is thus governed by the rate sensitivity of (more or less) steady-
state creep. If N were assumed constant, integration of eq. (97) under neglect of the first
term would give ;

Y = Y, exple/N). (102)

Note that N is not a decay constant, but governs the rate of increase. The meaning of Y, in
eq. (102) will normally be that of a strain gradient (eq. (86)) that resulted from earlier neck
evolution.

Equation (102) was derlved by Hart® for the rate of neck growth in the steady-state limit.
(Unfortunately, he used the same symbol m for the steady-state rate sensitivity as for the
instantaneous rate sensitivity, here called M.) In fact, if every cross section of the specimen
were in steady state, and stejady state obeys a power law

é oc gV (103)
then the gradients of stress and strain-rate must be linked by

Olné _ 1 dlne
ox |, N ox

t

*Previously,*® it had been defined at constant hardening rate, and M had been assumed constant.
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or, with the definitions (35) and (85),

o¢’ Y

.= "N (104)
This is the equation that led to eq. (102), and follows from eq. (97) for (3?Y/de?) ~ 0 and
op=0.

In conclusion, we emphasize two points. First, that when all material elements have
reached the steady-state limit, the specimen is not in steady state; it necks at a rate given by
the steady-state stress exponent. Second, that just before steady state is reached, near the
condition ép = 0, the material parameters change markedly during the development of the
nonuniformities; the behavior can then only be described by the second-order equation (97).

We have argued before''® that in this same regime, it may be an adequate approximation
to set the parameters b and ¢ constant, while 6, ~ 0. In that approximation, eq. (97) can be
integrated in closed form. It is especially simple when b > 1, which is realistic for some
high-temperature materials''® and, in addition, makes any variations of dp near zero truly
insignificant. The strain gradient is then given by

Y = Y, exp(—be) + Y, exple/N). (105)

The constants Y, and Y, depend on the two initial conditions. Note that the role of dp as
the decay constant for the short-term branch has, in this limit, been assumed by b, the
curvature of the creep plot (In € vs. €) near the minimum, instead of the slope. Taking
account of rate sensitive strain hardening, one can therefore broaden the condition (91) for
high localization resistance (i.e. a potential for superplasticity) to read

[ 5+b>l (106) |

where again the difference between constant-load and constant-stress conditions can usually
be neglected.

Numerical solutions for arbitrary but constant values of the coefficients in eq. (98) have
been obtained.!* They show the overwhelming importance of the strain-rate sensitivity of
strain hardening, in the low-hardening regime.

There are many important questions of detailed geometry, and its effect on stress distri-
bution, which enter into a proper treatment of necking. We have left these out of our
discussion entirely, since we were concerned with the kinetics only.

4.4. Compression, Torsion, Sheet Forming

Up to now, we have often assumed the macroscopic test piece to be in tension. This was
not always a necessary restriction, but more in the nature of a convenient simplification.
The overriding concern was for a sample with alternative straining elements. The easiest
exemplification of such a piece of material is a long, slender specimen, as it is used in a
tensile test.

Compression specimens are usually squat. Since plastic deformation occurs by shear, the
straining elements tend to be inclined toward a uniaxial stress axis, rather than being
perpendicular to it. Thus, they interact with the compression platens: they are not alterna-
tive in the sense that they can act independently of each other. However, compression
loading is also sometimes imposed on samples of a length-to-diameter ratio greater than
one. In that case, the difference to a tension test becomes merely a matter of sign.
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The stress, the strain rate, and the strain increment were used in unsigned convention in
this article: they are the eguivalent quantities in the sense used in plasticity theory; measures
of the scale rather than of the (tensorial) “direction™. The only relations in which the sign was
important are of a geometrical nature: the connection between strain increment and area
change (eq. (2)), and those that followed from it: egs. (20), (22), (85) through (88), (97), and
(98)).* In particular, the dlfference between the material property 6 (the deceleration par-
ameter in a constant-stress creep test) and the critical test parameter 8, (at constant load)
depends on the kind of loading. In many of the applications, we have found this difference
to be of no consequence: particularly, when strains were small. Therefore, the relations
derived for Liiders front prbpagation and for jerky flow hold with negligible modifications
for compression tests on relatively tall specimens.

Torsion loading is a case intermediate between tension and compression: here, there is no
connection at all between area and strain (assuming the length is held constant). Again,
when the bar is long enough for the straining elements to be regarded as alternative (which
may here not be very long), localizations may develop. An investigation of Liiders front
propagation and jerky flow under these circumstances would be interesting.

The development of a neck is, of course, a phenomenon restricted to tensile deformation.
Nevertheless, physically similar processes can occur in compression and torsion. In compres-
sion, an accentuation of a strain-rate gradient that may have originally arisen by fluctu-
ation, or from an area irregularity or a material heterogeneity, would increase the cross-
sectional area and thus le?d to a process called barrelling. While the severe barrelling
frequently observed is strongly influenced by friction effects at the compression platens, the
phenomenon can, in princifale occur by the very same mechanisms that led to localization
of flow in tension. This was discussed in detail by Jonas and coworkers®®*® for the case of
substantial flow softenmg‘”’ Even under mild hardening, though, where the decrease in
stress with an increase in area tends to redistribute flow more uniformly, non-negligible
strain gradients may arise in the transient.

For a quantitative treatment, we refer to the differential equation for the development of
strain-rate gradients in its general form: eq. (96). The area changes on the right-hand side
are zero for torsion, so that

9 dlné :
1€ 4 6 +b) glné) 0 (torsion). (107)

Eéax, ox |,

The solutions are therefore identical to those in which we had neglected changes in geom-
etry and in material constants: egs. (34) and (36), and Fig. 10; only, 8, there must here be
replaced by & + b. The influence of b may be important at high temperatures, where the
rate sensitivity of strain-hardening (and of M itself) is often large due to dynamic recovery.
Then the growth or decay of any fluctuation would be slow, and large strain differences can
be accumulated in the process. In steady state, deformation is uniform—so long as b > 0.
Again, the rate sensitivity of strain hardening is crucial.

In compression, the nght-hand side of eq. (96) has the opposxte signs of those in tension.
With

H+1

5, = —y~  (compression) (108)

*Jonas and coworkers'®*® have used precisely the opposite technique to treat compression: they changed the
signs of stress, strain, and strain rate, and left the relation between area and strain intact. This has two disadvan-
tages: the sign of the inequalities changes; and torsion cannot be treated at all.

W
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TORSION

FiG. 28 Qualitative development of an initial strain-rate gradient near steady state.

we get

%Y
= + (0, + b) % + ¢cY = 0 {(compression). (109)

The important (and not unexpected) result is that the restoring force in the last term is now
normally positive: area gradients must eventually vanish. (This is not so when ¢ is negative,
as may happen under the influence of severe simultaneous recovery or recrystallization at
high temperatures, see Fig. 5.} Furthermore, the “damping term”, the coefficient of Y, is here
always positive. Thus, growth of nonuniformities can never be unbounded—but both
growth and decay can be quite slow. Figures 24 and 25 demonstrated this effect under the
assumption of a constant dp; the limiting value is 1 for steady-state compression.

Incorporating the effects of changes in material properties with strain, Fig. 28 shows the
development of the strain gradient after an initial strain-rate gradient for tension (eq. (97)),
torsion (eq. (107)), and compression (eq. (109)), in a qualitative way. While growth in tension
is unbounded, it is slow but bounded in torsion, and in compression it reverses. The strain
gradient at the maximum should be of the same order as the initial relative gradient in area,
stress, or glide resistance, if these were what gave rise to the initial strain-rate gradient.

Sheet forming qualifies, under some circumstances, as deformation of alternative straining
elements. In many practical applications, however, as well as in biaxial test configurations,
the constraints exerted by the surrounding material cause important interactions. A dis-
cussion of uniform deformation in homogeneous (and isotropic) sheets is nevertheless useful
as a baseline.

The case corresponding precisely to uniaxial tension is plane-strain deformation in a
sheet, Fig. 29. When a very wide strip is subjected to tractions in one direction, x, a mode of
localized deformation is possible that consists of thickness reduction only:®%) neighboring
elements that do not deform restrain contraction in the lateral direction, y, (and cause a
lateral tensile stress o,, = 0,,/2). The thickness reduction is then the same as the total
reduction in cross-sectional area. Its gradient may thus be immediately identified with the
quantity Y defined in eq. (84), and the whole rest of the tension formalism can be applied.
The only problem remaining is a proper identification of the equivalent stress and equivalent
strain rate under these circumstances for any particular material; the von Mises yield
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F1G. 29. The thickness reduction in a sheet under plane strain is equivalent to the area reduction in a
tensile bar.

condition and the “flow rule” are usually adequate. The equivalence of tensile necking and
plane-strain localization in sheets is experimentally confirmed: the critical strain is similar
to that given by the Considére criterion.

A narrow strip under uniaxial tension behaves somewhat differently. Lateral strains are
now not completely impeded (although they may be somewhat different from the thickness
strains, due to. the geometric anisotropy). In the limit that both are the same, the case is
again identical to tension. It'is here called diffuse necking—the reason being that the extent
of the neck tends to be govemed by the larger of the lateral dimensions, and is therefore
much longer here than in the localized mode discussed for plane-strain deformation. It
occurs at about the same strain.

A localized mode is also observed in the tension of narrow strips, but it occurs at a strain
approximately double that for diffuse necking.®® It is in fact a plane-strain mode, and for
this reason occurs in a thin b?nd that is oriented in the direction of nonextensional deforma-
tion (where the plastic contraction is counterbalanced by the length change due to rotation).
Inasmuch as this mode invafiably leads to failure even if diffuse necking does not, it is the
localization of prime concern. Finally, a pure shear mode, which can be most sharply
localized, exists at zero,'®® or sometimes small but finite,!? hardening rate.

A more difficult situation arises when a sheet is deformed under balanced biaxial tension,
or in fact in any direction in stress space in which the lateral principal stress exceeds half the
longitudinal one; or equivalently, in which the lateral strain is positive. The observation
here is that a localized mode occurs that looks very much like the one in plane strain: it is
in a band perpendicular to the major stress axis. Explanations for this mode are still under
serious dispute. Inasmuch as there is no nonextensional direction, the geometric effect that
gave rise to “localized necking” in strip tension cannot be responsible. One set of explanations
is critically based on the preexistence of defects, especially area defects.**? Since such
defects are not necessary to explain the development of nonuniformities in tension, this
assumption would seem to make an undue distinction between the two types of stress
state. A treatment in terms of strain-rate defects has not yet been undertaken. Another set of
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proposed explanations relies on the development of vertices in the yield surface during the
previous deformation.® Its physical basis is not well established. Its chief merit is that it
does attempt to address the question of material behavior during changes of path in stress
space, as they must occur in the biaxial regime for any localization to be possible.®>

The latter problem may be more appropriately discussed in terms of a dependence of the
strain-hardening rate on straining direction, or its sensitivity to changes in direction.?¥ It
has been shown in simple cases that changes in slip distribution tend to cause structural
instabilities in the material. The resulting negative hardening rate could well be the cause of
localization. Experiments that involve deliberate changes in straining path are, however,
very difficult. A solution to this problem does therefore not seem to be in sight, even though
it is of great technological importance.

5. CONCLUSIONS

5.1. Summary

All pieces of material that have alternative straining elements are prone to developing
nonuniformities in deformation. These may be initiated by some defect in the specimen
(either geometric or physical), or by some fluctuation in the strain rate, or as a consequence
of an inherent material property. In particular, negative strain hardening and a negative
rate sensitivity of the flow stress cause initial instabilities.

Whether deformation tends to localize or to spread after an initial disturbance, and how
fast it does so, depends on the deceleration parameter J: the (negative) slope in a plot of the
logarithm of the strain rate vs. the strain, i.. the quantity measured in primary creep. It is
proportional to the work hardening rate, and inversely proportional to an appropriate rate
sensitivity. '

The material parameters, strain-hardening rate, deceleration rate, and rate sensitivity, are
local properties. In the very cases where nonuniform deformation is possible, macroscopic
measurements are not directly indicative of these material properties, but rather of specimen
properties. For example, negative intrinsic hardening often leads to a plateau in the stress
strain curve; conversely, a negative macroscopic stress strain characteristic may be indica-
tive of homogeneous (and even locally decelerating) deformation. A negative rate sensitivity
leads to macroscopically jerky flow and can be observed only indirectly. For these reasons,
any analysis that attempts to describe material behavior in nonuniform deformation must
be based on a careful distinction between local and macroscopic properties.

Two of the common modes of nonuniform deformation, jerky flow and the spreading of a
Liiders front, are in fact delocalizations after an initial instability caused by an inherent
material property: negative rate sensitivity in the case of jerky flow, negative strain-harden-
ing in the case of front propagation. Their very different behavior is due to one fundamental
and one quantitative difference. In the Liiders case, the material is left, after the front has
passed, in a state akin to having been deformed uniformly, and is thus ready to proceed in a
homogeneous manner. In jerky flow, this is not the case. Furthermore, the absolute magni-
tude of the rate sensitivity in the first case is large, in the second small; as a result, the
strain-rate discontinuity in jerky flow is too large to be accommodated by steady-state front
propagation.

Necking, by contrast, is characterized by increasing localization of initially uniform defor-
mation. It is unavoidable; its eventual rate of development is determined by the steady-state
rate sensitivity. At an earlier stage, criteria of (instantaneous) instability provide only very
limited guidance to material behavior. Rather, it is determined by the details of the initial
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conditions and by the magnitude of the deceleration parameter dp (at constant load). Even
when it is positive, but small, differences in strain rate (which may have originated as a
fluctuation) persist for subStantial strains—and all during this time, the strain gradient
grows. For this reason, the Considére criterion has been successful as an approximate
demarcation line between negligible and severe localization. For this reason also, however,
significant localization is possible in torsion and compression, even when the Considére
condition is not exceeded. .

The strain rate emerges as a crucial variable: its change with strain in each material
element, its gradient along the specimen, and its influence on the flow stress. It alone makes
both a qualitative and a quantitative treatment of the development of nonuniform deforma-
tion possible. Without rate |dependent plasticity, only yes/no criteria can be derived, and
they have been found severely wanting,

5.2. New Results

A number of suggestions flave been made here for the first time. They will now be briefly
summarized. 1

(1) The material parameters and constitutive laws have been formulated ab initio in an
evolutionary way: by the rate of change of stress and of strain rate with strain. This has the
advantage that path dependence is inherently allowed; only when it is unimportant can
other relations be uniquely ﬁeﬁned. (Section 2.3.)

(2) The differential equation governing neck development has been newly derived based
on these evolutionary material parameters. This provides a generalization of the recently
suggested!® formulation. The differential equation is of second order in strain (or time) at
every cross section, and thlis allows for the necessary two branches of neck development,
one bounded and one unbounded. It also describes the various initial defects (if any) by a
single formalism. Finally, itshows that the geometric part of the problem, which had been
the entire basis of previous treatments, is relatively unimportant when hardening is low, and
especially when the rate sensitivity of hardening is high, as it frequently is. Then, even in
compression tests where &, remains positive (unless there is severe recovery or recrystalliza-
tion®®), transient nonuniformities in deformation can be expected. As a general condition
for low resistance to localization, independent of boundary conditions, the criterion é < 10
is proposed. (Sections 3.1, 4.3 and 4.4.)

(3) A distinction between|two kinds of negative hardening has been suggested: a strain-
triggered structural instability, which leads to transient localization at constant stress; and
homogeneous recovery that occurs even where straining does not, and allows macroscopic
negative hardening without instability. Classical “work softening” appears to be of the
second type. (Section 3.3.) |

(4) A more realistic approximation of material kinetics has been proposed for the case of
Liiders front propagation: constant deceleration (logarithmic creep) for all strain rates above
the prescribed average, and zero strain rate below. This gives a considerable improvement
over the classical exhaustion type of kinetics, both in the prediction of the Liiders strain,
and in the description of the front width. Creep at lower strains has been used to explain
peculiarities at the end of the Liiders plateau.(SecFon #.1)

(5) For the regime of jerky flow, the detailed shape of the material characteristic in the
regime of negative rate sensitivity is used to explain the type and severity of serrations. A
broad “valley” gives rise to a large strain-rate discontinuity and thus presumably to a high
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velocity of front propagation and severe serrations. The depth of the valley determines the
maximum value of the load drops and thus, through strain hardening, the strain per jerk.
Machine interaction only controls the width of “hopping bands”. (Section 4.2.)

(6) The stress relaxation test has been shown to be unresponsive to negative rate sensi-
tivity, except in an extremely soft machine. However, the continuity of strain rate from
immediately before to immediately after arrest of the cross-head should be broken when the
rate sensitivity is negative. (Section 3.3.)

5.3. Assessment

We see the outstanding problems in the four major areas of localized flow as follows.

Liiders front propagation. The root cause of this phenomenon has long been known: a
high generation stress. However, this does not control the level of the lower yield stress,
which must be decreased if nonuniform deformation is to be minimized. While its relation
to various other variables and material properties is now well described, the crucial ques-
tion of the mechanistic cause has not been solved. Detailed measurements that include a
deliberate variation of the rate sensitivity of the material would be of value.

Jerky flow. It appears to be well established that a negative intrinsic rate sensitivity is the
cause of jerky flow, or at least a necessary condition. The reason for the strain dependence
of the negative contribution to the rate sensitivity is yet under dispute; it was not a subject
of this article. The mechanism that controls front propagation, and its connection to the
magnitude of the negative rate sensitivity, is the most pressing unknown. It could explain the
shape of serrations. The stress at which the rate sensitivity becomes zero is of prime
importance; it may be the same as that at the bottom of the load drops in type-C serrations.

Necking. While its development is well understood in the regime of superplasticity, the
conditions for the initiation of severe necking near the UTS are not sufficiently appreciated.
A detailed investigation of specimen shape development, coupled with measurement of the
material properties in a creep test under constant load, and with computer integration of
the governing differential equation, should provide the necessary insight. A comparative
study of barrelling in compression in this light might prove interesting,

A proper treatment of sheet deformation in the biaxial stress regime awaits a detailed
investigation of constitutive behavior under deliberate path changes. The behavior of the
strain-hardening rate after such path changes should be of particular interest in this context,
not only the change in size and shape of the yield surface and plastic potential.

In general, we find that the influence of rate sensitivity in the material description has
been unduly neglected in the past. Inasmuch as it is, to some degree, controllable by
metallurgical variables, it could provide a key to performance improvement.
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