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1. INTRODUCTION

Constitutive equations are the vehicle by which our knowledge of
material behavior enters into engineering design. At the very least,
they should be sufficiently accurate. This could be—and frequently
is—achieved by an empirical description based on data obtained under
conditions that essentially duplicate those of the specific application.
Of more general usefulness are relations that can be applied under a
wide range of conditions and for many materials, containing a number
of materials parameters (the fewer the better), which can be measured
in simple tests. Such general relations can be expected to be found
only if they fulfill two conditions: they must be phenomenologically
sound; and they should be based on as much of the underlying physics
as can be ascertained with some confidence. The closer the phenom-
enological description reflects the actual physical processes involved,
the further it can be extrapolated beyond the range of variables for
which it was measured.

Phenomenological soundness reflects, inter alia, an appropriate
choice of variables, and a formulation that exhibits the proper
invariance against arbitrary frames of reference. For example, it
recognizes that the material responds to stresses, not forces (thus
separating parameters of the geometry from those of the material),
and that the stress is a second-rank tensor; it takes proper account of
the changes in geometry with finite deformations, usually by the use of
matrix descriptions. These problems are by no means trivial, but they
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are solvable. More subtle are judgments as to whether one should use
history or state variables, integral or differential descriptions, and the
like.

We will address some of these questions briefly but will, in the main,
oversimplify the phenomenological aspects in order to concentrate on
the material properties. Thus, we will inquire into the behavior of a
material element (a convected volume element) under a macroscopi-
cally uniform stress during a macroscopically uniform, infinitesimal
increment of strain. These (local, average) stresses and strain-
increments are supposed to be related to surface tractions and surface
displacements by the standard methods of solid mechanics. For this
purpose, the medium in which the element is embedded is considered
non-dissipative—though the element itself is essentially dissipative. By
this convention, the local stresses and strain-increments become, in
effect, the ‘applied’ variables (regardless of which is viewed as the
independent and which as the dependent one). Their product is the
work done by the environment on the material element under
consideration, representative, in the end, of the lowering of weights at
the surfaces.’

We will regard the material element as being at constant
temperature, on the time scale for which the behavior is described. The
material response is then principally the relation between the stress and
the strain-increment. In addition, the stress increment, time-rates of
change, and other variables may enter under certain circumstances.

The prime lesson to be learned from materials science is that there is
not one material response, one ‘mechanical equation of state’, or even
one set of differential constitutive equations. If such a completely
general formulation were attempted, it would be too complicated to be
of any use. A more effective approach is to look for classes of
materials, regimes of variables, and aspects of behavior, for which a
‘universal’ constitutive description can be found. For example, in the
present treatise, we will concentrate on polycrystalline, single-phase
metals of cubic lattice structure that have been plastically deformed
by, say, 1-100%, at temperatures between about 20 K and one-half to
two-thirds of the melting temperature, at strain rates between about
1077 and 10°s~*. Withing this restricted (though very broad) ‘interest
space’, deformation is governed by crystallographic slip in the grains of
the material element or, on a finer scale, by dislocation glide and
dislocation storage. This assessment of the physical mechanisms allows
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one to formulate a meaningful set of stress/strain relations, with
respect to both the kinetics and the multi-axial behavior.

An important input from an understanding of the physical mechan-
isms is the provision of diagnostic tools to assess whether a specific
material under specific conditions in fact falls within the assumed
‘regime’."? In Section 7 we will give some examples; in particular, it
will be outlined how one can assess whether a material behaves, in its
macroscopic properties, like a ‘single-phase’ or a ‘multi-phase’ mate-
rial, which has important implications for the hardening rule to be
expected.

A final decision one has to make is which aspects of behavior to
include. Again, if one attempted to condense all aspects of the
mechanical behavior into one general set of constitutive relations,
these would quickly become unmanageable. This is the point in any
complex problem where judgment becomes of paramount importance.
For the purposes of the present treatise, considering the ‘interest
space’ circumscribed above, it is our judgment that a sufficiently
self-contained description of plasticity can be obtained by ignoring
elasticity and anelasticity, unloading and reverse-loading effects,
inertial effects and body-forces, and energy storage. We will give some
justifications for this judgment in Section 2. The judgment concerns
material properties only; for calculational purposes, an inclusion of
elasticity is sometimes necessary (when pure plasticity relations cannot
be inverted), and body forces are sometimes used explicitly as an
algorithmic tool, etc.

Our primary concern will be with three aspects of material behavior:

— the kinetics of flow under the influence of thermal activation,
which is well described elsewhere'” and will only briefly be
summarized in Section 3;

— the influence of polycrystal plasticity on the multi-axial stress—
strain relations for anisotropic materials, for which we present
new results in Section 4;

— the description of the evolution of the state parameters, which is
given for both texture and substructure evolution in Section 5,
including some new proposals for treating a specific second state
parameter.

To round out these primary concerns, we will discuss various meanings
of the term ‘internal stress’ in Section 6, and assess them with respect
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to the necessity or usefulness of introducing such an extra parameter.
Finally, in Section 7, we summarize diagnostic procedures to establish
the type of behavior that controls a given material in a given regime of
the variables, and summarize the constitutive relations for the interest
sphere emphasized in this article. This leads to some general recom-
mendations in Section 8.

A recurring theme in constitutive relations is scaling laws. We will
give some general guidance to various stress and temperature scaling
parameters. In addition, we discuss briefly the fundamental question
of scale: the size of a meaningful material element (Section 3.1.1).

A major theme of this book is ‘unified’ constitutive equations for
‘plasticity’ and ‘creep’. In the physical theories of plastic deformation,
this unification exists ab initio: whether the strain (rate) is prescribed
and the stress is measured, or the stress is prescribed and the strain
(rate) measured—the material response is the same, it must be
independent of the boundary conditions.

The material response is also independent of the history; it is
entirely determined by the current (micro-)structure, regardless of
which path was taken to get there. This may be called the ‘article of
faith’ of material scientists, and it will be assumed throughout this
work: current behavior depends only on the current state. The current
rate of evolution of the state is one aspect of current behavior.

2. SOME IMPORTANT REALITIES

For problems as complicated as plasticity, there is no hope of ever
finding a ‘correct’ solution, from first principles, even for a restricted
interest space. The most important decisions are made before one
writes down the first equation: namely, what to consider important
and what to neglect if necessary. It is not only approximations at the
solution stage that are made (as anywhere in physics), but also
judgments at the problem-setting stage. To be as wise as possible in
making these judgments, it is imperative to have most of the basic
realities in mind.

2.1. Uniaxial Monotonic Deformation

2.1.1. Yield |
Figure 1(a) shows the beginning of a typical stress/strain curve. It is
drawn on a scale that emphasizes the transition from elastic to plastic
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Fig. 1. The same stress/strain curve drawn schematically on two scales: (a) to

emphasize the elastic—plastic transition, which is typically completed by about

5 times the elastic strain; (b) to emphasize the fully plastic state and strain
hardening. The dashed lines show unloading/reloading behavior.

behavior. For about half of the stress range shown, the behavior is
linear-elastic (modulus E). The beginning of deviations from linearity
coincides, for most materials,t with the beginning of plasticity: upon
unloading, there would be a permanent ‘offset’. This first deviation
from nonlinearity is sometimes used as the definition of ‘yield’; more
succinctly, it is called the ‘proportional limit’. Since the first deviation
from linearity is a matter of the resolution of the experiment, a
definition in terms of the magnitude of the offset is often preferred. A
typical choice for ‘microyield’ is an offset strain of 107°.

T Nonlinear elasticity of the deviatoric components is important only in
materials of exceptional strength.
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The slope of the stress/strain curve then drops precipitously:
typically, it changes by one or two orders of magnitude as the stress
increases by a factor 2. For this reason, it is easy to define an
asymptotic behavior: on the scale of Fig. 1(a) it is a horizontal line;
this stress is normally defined as the yield stress (or yield strength, or
macroyield stress, or flow stress). Another common definition uses an
offset of 0-2%; this is, in practice, for many materials, equivalent to
the asymptotic definition, because yield is so sharp. (A more general
definition would be an offset of 5 times the elastic strain: then the
material is essentially fully plastic.)y

The asymptote is not exactly horizontal. Fortunately, it is approxi-
mately straight for many materials (single-phase, at low temperatures),
with a slope of about E/50. Then, back-extrapolation is a straightfor-
ward procedure (or rather, a straight-backward one). The loading
slope measured in a typical experiment is less than E, because of a
finite machine compliance—but usually larger than E/S. Thus, the
ratio between the two recorded slopes is usually larger than 10. This
permits an accurate determination of the point of intersection between
the two lines: the ‘yield stress’.

In two-phase materials, or at high temperatures, the initial strain-
hardening behavior may not be linear. In such cases, a plot of the
square of the stress against strain may well give an approximately
straight asymptote near yield, and may then be used to determine a
back-extrapolated yield stress.>* Alternatively, one may here resort to
a 0-2%-offset definition.

2.1.2. Strain Hardening: the Flow Stress

Figure 1(b) is a stress/strain curve drawn to a different scale; here
the elastic slope appears infinite—but what was called the (‘horizon-
tal’) asymptote above now appears with a definitely finite slope,
displaying the effects of strain hardening. It tends to its own
asymptote, at perhaps 2 to 20 times the yield stress: the ‘saturation
stress’ or ‘steady-state stress’. (Actually, in many materials the
asymptote is not truly horizontal, but its slope is typically another
order of magnitude lower.>®)

Figure 1(b) also shows the effect of unloading, after some significant
plastic strain, and reloading. There is again an elastic—plastic transient,
typically much sharper than at initial yield—but then the curve
asymptotically approaches the continuous one. Thus, the back-
extrapolated yield stress upon reloading is equal to the stress last
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reached before unloading; this is usually called the flow stress. The
strain hardening curve is then also the locus of all flow stresses as a
function of plastic prestrain.® This differs, in principle, from the
‘stress/strain’ curve (Fig. 1(a)) in that the elastic—plastic transition
region is not treated as ‘strain hardening’. In practice, on any scale on
which strain hardening can be seen (Fig. 1(b)), the two diagrams are
indistinguishable, and so are the total strain and the plastic strain; this
is how we will use ‘strain’ throughout this paper.

2.1.3. Transients

There are principally two types of transients in addition to the
elastic—plastic transition described above.'® Figure 2(a) illustrates a
yield drop; it occurs in some materials, such as mild steel, at the
beginning of testing (after an anneal), and in many other materials
after unloading and reloading (with or without deliberate aging). Its
length is typically much less than 1% strain, unless a Luders band
propagation is associated with it, in which case it may be of the order
of 1% strain. We choose to ignore such transients here, and continue
to consider ‘yield’ to occur at the stress obtained by back-extrapolating

A

(a)

- €

Fig. 2. Some commonly observed loading transients: (a) sharp yielding in aged

materials; (b) gradual yielding after recovery or a large increase in strain-rate

or a reversal of the straining direction; {c) ‘work softening’ after a large

decrease in strain-rate or a general straining-path change. (Similar behavior is

observed in essentially dislocation-free materials.) None of these transients
lasts longer than a few percent strain.
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the steady stress/strain curve—either to the ‘lower yield point’ or, if
feasible, beyond that to the elastic line.’

The other type of transient is longer (typically about 3% strain) and
often difficult to ignore or extrapolate through. It occurs after path
changes, and primarily when the strain-hardening rate is low (due to
dynamic recovery). For example, after an increase in strain rate or
decrease in temperature, it typically looks like Fig. 2(b), after the
reverse path change like Fig. 2(c) (this is called ‘work softening’). A
change in ‘stress path’ (i.e. in the ratios of the components of the
stress and/or strain-rate tensors; see Section 2.2) may cause either one
of these behaviors.

A special case of a path change is stress reversal: after previous
straining in the reverse direction, a new loading curve looks about like
Fig. 2(b). In a microyield definition, this amounts to a substantial
lowering of the ‘yield stress’ upon reversal, and this is often referred to
as the ‘Bauschinger effect’. It is seen that, from a macroscopic
plasticity point-of-view, such a description does not capture the
essence of the effect: the Bauschinger effect is primarily a transient in
the strain-hardening behavior. The asymptotic behavior after the
transient may or may not coincide with that without reversal,
depending both on the details of the chosen description and on the
type of material. We shall make use of this material dependence as a
diagnostic tool to identify two-phase materials in Section 7.

2.1.4. Rate Sensitivity
The rate sensitivity of the flow stress may be defined as

_Olnoy

dlné | (2.1)
where oy may be the yield stress or the flow stress in a prestrained
state of the material, as defined in Fig. 1(b). (However, it is not the
flow stress attained after the same strain at different strain rates; see
Section 5.2.4.) This ‘isostructural’ rate sensitivity m is usually negli-
gible in magnitude, of order 0-01.'"'* This fact has led to the common
idealization of a rate-independent material, which is often useful. One
case in which the rate sensitivity becomes of paramount importance is
when it is negative: this causes instabilities (unless some other
stabilizing factor intervenes).’?

There is another rate sensitivity: that of the flow stress in the limit of
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steady state (i.e. zero strain-hardening, which is controlled by the rate
sensitivity of strain hardening. It is commonly characterized by a
‘stress exponent’ n (the inverse of a rate sensitivity):

1 3 In o,

= 2.2
n dlné¢ T ( )

1/n is always much greater than m; it increases more-or-less linearly
with temperature,”® from values around 0-03 near room temperature
(strongly dependent on the specific material) to near 0-3 at high
temperatures. This rate sensitivity is responsible for a significant
increase in stability against necking.?

While all of these rate sensitivities may be quantitatively neglected
in many applications, the principle of rate sensitivity is useful in two
respects: (a) it eliminates phenomena such as bifurcations and vertices
on yield surfaces that are really artifacts of the idealization of a strictly
rate independent material;” and (b) it serves as a potent diagnostic tool
to identify physical mechanisms.! We shall use these two effects of rate
dependence in Sections 4 and 7, respectively.

All the rate sensitivities in the regime of interest we have cir-
cumscribed are intimately linked to temperature sensitivities, because
they are due to thermal activation. We will summarize these relations
in Section 3.

2.1.5. Pressure Dependence and Volume Changes

Yield stresses and flow stresses are almost always proportional to
elastic constants—and elastic constants are pressure dependent. Thus,
yield is, in principle, pressure sensitive. In many cases, experimental
observations of pressure dependence are in quantitative agreement
with this explanation.’* It makes the yield strength go up with
pressure.

Other pressure effects could be due to a change in dislocation core
configuration with pressure, and a consequent change in the lattice
resistance (‘Peierls stress’). In this case, one would expect the yield
stress to decrease as the pressure increases (since the cores get wider).

Neither of these pressure effects causes any plastic volume change.
Volume changes are, however, possible through the accumulation of
defects with deformation: dislocations themselves as well as vacancies
(or voids) and self-interstitials cause some increase in the volume. An
applied pressure could therefore decrease the rate of accumulation of
these defects and thus influence hardening processes.
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All of these effects are usually quite small and shall be neglected in
the present treatise. They would be significant in materials of
exceptional strength (such as high-strength steels'*) or exceptional
elastic nonlinearity (such as polymers'®), or at very high pressures, or
very large strains (when void generation becomes important).

Finally, we emphasize that elastic volume changes (as opposed to
deviatoric elastic strains) can be quite large when the pressure is great:
in strong shocks, the volume may decrease by a factor 2.

2.1.6. Energy Storage

The accumulation of dislocations during plastic deformation, and the
possible changes in microstructural details such as precipitate size,
shape, degree of order, etc., require some of the plastic work to go
into stored energy. A simple estimate shows that the rate of energy
storage divided by the rate of work done should be of order 8/u:'6 the
shear hardening rate (in crystallographic slip) divided by the shear
modulus. This quantity is always less than 0-01 in single-phase
materials of cubic lattice structure, although it may be quite high
(especially at low strains) in two-phase materials and polycrystals of
hexagonal or lower symmetry materials. Experimental determinations
of the energy stored after deformation typically give about 3% of the
work done.

The rate of energy storage provides a ‘thermodynamic threshold”
for flow: a minimum stress that must be applied to furnish the energy
to be stored. Due to the above estimates, this stress can be safely
neglected for all but ‘the very lowest stresses, at high temperatures (for
the materials of interest here). We shall therefore consider plastic
processes to be essentially dissipative.

2.1.7. Conclusion

A good approximation for a description of the plastic response of
many materials under many conditions is to treat them as essentially
rigid-plastic, purely dissipative, rate independent, pressure independ-
ent, and isochoric: this we shall do in the present text. However, none
of these idealizations is strictly true; thus, they should not be taken
seriously when they lead to qualitatively different behavior. With these
restrictions, we will emphasize the behavior under multiaxial
deformations. We will also treat in some detail the description of
evolution (including its rate dependence).
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2.2. Multiaxial Deformation

2.2.1. The Yield Surface

The fact that yield is sharp and rate-insensitive makes the concept of a
yield condition useful (as opposed to a treatment in terms of a plastic
modulus, decreasing with strain, or a plastic viscosity, increasing with
strain rate). This is true particularly when ‘yield’ is defined as the
asymptotic behavior discussed in Fig. 1(a); for small-offset (‘micro-
yield’) definitions, the concept of a yield surface is questionable—we
shall return to this below (Section 2.2.3).

The yield condition is graphically described by a surface in stress
space. Since the stress is a symmetric second-rank tensor, ‘stress space’
is six-dimensional; since the hydrostatic component of stress is
considered irrelevant (or essentially irrelevant) for plastic flow, one
usually uses the five-dimensional deviatoric stress space. In such a
space, it is convenient to describe the stress as a vector (in the sense of
a 51 matrix, not in the sense of a first-rank tensor). The yield
surface is, then, the locus of yield stresses for different directions of
the stress vector (i.e. different ratios of the stress tensor components).
Note that the ‘yield stresses’ do not transform as a tensor; their
directional dependence is described by the yield surface. It is for this
reason that the term ‘yield strength’ is sometimes preferred over ‘yield
stress’.

Symmetry considerations can reduce both the dimensionality and
the extent of the stress space in which the yield surface must (at least)
by given for a complete description. For isotropic materials, as is well
known, a 60° sector of the plane of principal deviatoric stresses
suffices; if there is no sign-dependence of yield, a 30° sector suffices. In
this sector, the demands of convexity (see further below) limit the
possibilities severely. Two commonly used assumptions are the “Tresca
hexagon’ (which is sometimes realistic, ¢.g. for the lower yield point in
mild steel) and the von Mises circle. It must be emphasized that the
circle in stress space is not a consequence of isotropyj; it is an assumed
shape of the yield surface within the bounds allowed by isotropic
symmetry.

A point often made, and true, is that, were it only to discover the
correct shape of the yield surface for isotropic materials, a great effort
would not be worthwhile, since the differences are so small. The fact,
however, is that experimental yield surfaces often depart very substan-
tially from those allowed for isotropic materials—because many
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torsion; long tubes of brass."” The ratio of yield stresses in any one state is
considerably greater than allowed by an assumption of isotropy.

materials (e.g. all that have been heavily deformed) are not isotropic.
An example is shown in Fig. 3,7 which represents probes in various
directions of stress space after various (large) amounts of prestrain in
torsion. It is plotted so that, were the von Mises criterion valid, the
reloading yield points would have to fall on the continuous curve. The
departures are quite substantial.

2.2.2. Equivalent Stress and Equivalent Strain

The size of the yield surface defines a scalar parameter, the ‘equivalent
stress’ (or ‘effective stress’), o,. Its change with strain may be used to
describe a form of hardening (called ‘isotropic hardening’; see below).
An ‘equivalent strain’ is usually defined as its work conjugate (so that
o; de; = 0. de.). An unfortunate experimental fact, however, is that a
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plot of equivalent stress versus equivalent strain does not usually give a
unique hardening law for all deformation modes. Figure 4 shows this
in an example for torsion and compression in brass, using the von
Mises definitions of equivalent stress and equivalent strain.'’+ There
are two plausible causes for this discrepancy: one that, as stated
above, few metals are nearly isotropic; but more fundamentally that
there is no reason to expect the state of the material to be the same
when the ‘equivalent strain’ achieved along two different strain paths is
the same (see Section 5.1.3).

T Sometimes the terms ‘equivalent stress’ and ‘equivalent strain’ are used as
identical to those according to the von Mises postulate; we will discuss this in
detail in Section 4.2.1.




14 U. F. KOCKS

2.2.3. Hardening Rules

This term is commonly used to describe changes in the yield surface
with strain. (The rate of change with strain is ‘strain hardening’ or
‘work hardening’, discussed above). The two most common hardening
rules are: ‘isotropic hardening’, a change in the size of the yield
surface only (all dimensions being scaled by the same constant—
whether the material is plastically isotropic or not); and ‘kinematic
hardening’, a change in location of the yield surface only (which
requires a tensor to be specified).

Figure 5 shows the results of an experimental probe of the yield
surface after a significant prestrain in torsion.'® ‘Yield’ was evaluated
both in the small-offset definition (¢=5x107%) and as the back-
extrapolated value. It is seen that the latter deviates little from
‘isotropic hardening’. Microyield, on the other hand, involves a change
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120 BACK EXTRAPOLATED
TORSION PRELOAD YIELD POINTS
al
o
tsx158 oFFseET
YIELD LOCUS
— + + 88—
-120 -40 40 80 120
O (MPaq)
VON MISES -40 o
YIELD FUNCTION —

0
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Fig. 5. Experimentally determined yield loci, after a pre-shear-strain of 0-5 in

torsion of a long tube of 1100 aluminum."™ The last stress reached during

prestraining is shown as a heavy arrow. The small oval ‘yield locus’ was taken

at a very small offset after unloading only into its interior. The von Mises circle

is shown for reference. The squares show back-extrapolated yield points.
(Yield stresses at 0-2% offset were the same.)
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in size, location and, in fact, shape of the ‘yield surface’. Another way
of describing the small-offset yield surface is that it is almost like the
macroyield surface except for a drastic reduction in ‘yield’ in the
reverse direction (to the point of occurring already during unloading,
in this case). This is in congruence with the description of the
Bauschinger effect we gave in Section 2.1.3: it is primarily a
work-hardening transient.

Another hardening rule has been derived from ‘slip theory’:'* here,
only the direction of prestraining hardens, developing a vertex around
it (and implying a Bauschinger effect, too). Such vertices around the
loading point have been observed;?® however, they appear to be a
dynamic phenomenon only: they are not found after (even partial)
unloading and reloading, for either definition of yield in aluminum
(Fig. 5).

We shall focus our attention on back-extrapolated (macro)yield
only. For this, ‘isotropic hardening’ is a good first approximation,
deviations may be expected in two-phase materials (in which the
Bauschinger effect has a more lasting component).

2.2.4. Plastic Anisotropy

It was already mentioned in Section 2.2.1 that experimental yield
surfaces deviate from the allowed range of possibilities in isotropic
materials; this is true even when the yield surface is determined at a
given state of the material."® Such discrepancies can only be explained
on the basis of plastic anisotropy. There is also an anisotropy in the
strain increments, which is in fact much more drastic: this corresponds
to substantial deviations of the plastic potential from any possible
isotropic yield surface. For example, if strips of rolled sheet are
subjected to a uniaxial tensile stress, the two lateral strains will, in
general, not be equal; their ratio is called the R-value or ‘Lankford
coefficient’.?" This anisotropy is a major cause of forming problems.
Apart from the well known ‘earing’, it may be a cause of instabilities.”

2.2.5. Conclusion

It is our judgment that, considering the ‘realities’ reviewed in Section
2.1, the concept of a yield surface is useful (in preference to a
description in terms of a plastic modulus or a plastic viscosity)—but
only for the back-extrapolation definition of yield. With this definition,
‘isotropic hardening’ may be a good first approximation, but plastic
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isotropy is not. For the rate of hardening in different deformation
modes, no good description is yet available.

3. FLOW KINETICS

Kinetics describes the rate at which processes occur under given
driving forces (and given temperature)—or, conversely, the influence
of an imposed rate of the process (such as straining), at a given
temperature, on the forces required. The kinetics of a process is a
consequence of the physical mechanisms that control it.

The physical mechanisms of plasticity occur on a microscopic scale;
yet the kinetics is measured on a macroscopic scale. It is therefore
important to have some understanding of the connection. Under
certain conditions, the microscopic non-uniformities can give rise to
macroscopic instabilities which in turn can lead to localization and thus
return the process to a more microscopic scale. These questions will be
briefly addressed in Section 3.1.

In plasticity, there are two different types of kinetics that are
conveniently separated: flow kinetics, which describes dislocation glide
at a given ‘structure’ or ‘state’ of the material; and evolution kinetics,
which describes the influence of strain-rate and temperature on the
rate of change of structure (state).

In Section 3.2, we will deal only with the kinetics of dislocation
glide, and shall review only the most essential fundamentals. The
statements that will be made may be regarded as well established, as a
consequence of decades of research by many investigators. For a
detailed treatment, see Kocks et al.’

3.1. Non-uniform Deformation

3.1.1. Microscopic Heterogeneities and Jerkiness
Deformation is always non-uniform on a microscopic scale: it is
localized in specific slip planes and, on a finer scale yet, occurs by the
motion of dislocations. It is also non-uniform in a temporal sense: both
dislocation motion and slip on a whole plane are ‘jerky’. For most
macroscopic applications, these effects are averaged out over the
extent of the material element and over the time scale of interest.
This microscopic non-uniformity has one major consequence on
constitutive descriptions of plasticity: the material element that is
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taken to represent a ‘point’ in the continuum sense must be large
enough to encompass many dislocations and many slip planes. This
typically means that it must be larger than about 10 um on edge. A
more stringent criterion for most materials, which are polycrystalline
aggregates, is that the material element must contain many grains.
This typically means that it must be larger than about 1 mm on edge.
On the other hand, of course, it must be small enough to warrant its
treatment under macroscopically uniform conditions: the gradients of
stress and of strain-rate, for example, should not be too great over the
extent of the chosen material element.

Similarly, the time step over which deformation of a material
element may be considered uniform is limited by various processes.
Experimentally, the time for a ‘unit slip step’ (corresponding to the
motion of many dislocations throughout the whole slip plane) is
typically of the order of 0-1-1 s in observations at ‘normal’ strain rates
and temperatures”—but this may well depend on stress and tempera-
ture. It is limited at the lower end by dislocation vibrations in the
phonon field, which occur on a time scale of the order of 1071 s. This
is a regime of interest in shock deformation, which has not been
explored sufficiently.

One macroscopic consequence of the ubiquitous microscopic non-
uniformities is that they provide a basis for (spatial or temporal)
fluctuations—which may, on occasion, lead to unstable behavior.

3.1.2. Acceleration and Localization

Instabilities of deformation are usually described in terms of a
localization of flow: that is, when flow becomes easier in one place
than another (and the two are compatible with each other). ‘Easier’, at
constant load, means faster; at constant rate, it means with a drop in
load (and thus unloading of the ‘other’ elements). A characterization
of plastic instability in terms of decreasing loads is, therefore, special
and requires a knowledge of the interaction between many material
elements and far-away boundary conditions.

On a local and instantaneous scale, the stress is fixed; however, the
strain-rate may undergo fluctuations. The question then is whether
these fluctuations tend to be damped out or lead to continued
acceleration. In the latter case, the germs of instability are present.

There are two different types of causes for acceleration.” One is in
the evolution that would occur if the process went on: strain softening
or texture softening, for example, leading to diffuse or localized
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necking. The other possible cause of accelerations is instantaneous:
e.g. if dislocation propagation is much easier than their generation; or
if the propagation itself can occur in two modes—with or without
continual aging. In both of these cases, the strain-rate may (and
therefore will’) discontinuously jump to a higher value.

When there is a high generation stress for dislocations, such as in
(aged) mild steel, there is a yield drop in tension (Fig. 2(a)), followed
by a (perhaps jerky) stress plateau, while one or more Liiders bands
propagate along the specimen. After the whole specimen has once
been deformed, dislocation generation is no longer necessary and
homogeneous deformation ensues.

When aging can occur dynamically during straining, there is a
continual alternation between the two modes, leading to jerky flow
(serrated stress/strain curves). This may occur essentially homogene-
ously, as in a compression test, or be accompanied by the rapid
(non-steady) propagation of bands. It is associated with a macroscopi-
cally measurable negative rate sensitivity.

Neither of these processes is catastropic, from a macroscopic point
of view. The stress/strain/strain-rate relations are almost the same as
under more uniform deformation. The main interest in the phenomena
is in the surface irregularities that may be expected, for example in
sheets that have deformed in a non-uniform manner.

From the point of view of constitutive relations, it is important to
realize that macroscopic instabilities arise from within the regime of
uniform behavior. One must therefore understand the plasticity of the
material under presumed uniform conditions even if the primary
interest were in the formation of instabilities.

3.2. Uniform Deformation

3.2.1. The Mechanical Threshold

The concept of a yield surface may be put as follows: it separates a
region of equilibrium states, inside it, from a region outside it in which
equilibrium is not possible. There is a very similar concept in
dislocation theory, namely the ‘mechanical threshold’:! below this
value of the stress, dislocations can always find a static equilibrium
situation; above it, no such equilibrium configuration exists, at least in
a statistical sense, for many slip planes. Note that some dislocation
rearrangement may occur at very low stresses, and more and more as
the stress increases: this is ‘plasticity’ in a sense, but it is akin to
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‘contained’ plastic flow, the elastic—plastic transition region (Fig.
1(a)). The mechanical threshold corresponds exactly to the asymptote
at which plasticity becomes general, macroscopic, as in Fig. 1(a).
Thus, it is opportune to identify the ‘yield surface’ with the locus of
mechanical thresholds.

The above considerations were strictly mechanical—to be exact:
static. At stresses above the mechanical threshold, viscous and inertial
forces come into play, and if these are included, a ‘dynamic equi-
librium’ may be attained. On the other hand, below the mechanical
threshold, thermal fluctuations (in ‘thermodynamic equilibrium’, at a
constant, finite temperature) may release dislocations from their
‘mechanical equilibrium’ positions and give rise to ‘thermally activated
flow’.

Thus, the mechanical threshold serves as an important demarcation
line: flow is in fact possible both below and above it, but the kinetics is
quite different in the two regimes."** This is shown schematically in
Fig. 6. In a strictly rate-independent material, the strain rate y would

Y
4‘ MECHANICAL
THRESHOLD

VISCOUS
GLIDE

THERMAL
ACTIVATION

Fig. 6. Schematic linear strain-rate vs. stress diagram. The mechanical

threshold © serves as a demarcation between two kinetic regimes: thermal

activation (by far the most common process) below it; viscous glide above

(presumably occurs at strain rates >10°s7"). The mechanical threshold would
be the yield stress in completely rate-independent flow."***
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be zero at stresses below %, and indeterminate at %. The curve in Fig. 6
describes the effective smoothing-out of this step function in real
materials (and also takes account of the upper limit set to all strain
rates by the shear-wave velocity and the de facto maximum dislocation
density).

The ‘yield surface’, if it is to refer to a rate-independent material,
must then describe the mechanical threshold—and it will still be quite
useful in rate-dependent materials. However, it is then no longer a
limit between equilibrium (elasticity) and nonequilibrium (plasticity),
but a limit between thermally activated plasticity (with little rate
sensitivity) below this critical stress, and rate sensitive, quasi-viscous
plasticity above.” In most applications (very high strain rates ex-
cepted), plasticity occurs inside this yield surface—though close to it,
because of the very low value of the typical rate sensitivity. There is
usually no finite stress below which absolutely no irreversible flow
occurs anywhere. (See Section 2.1.6.)

The mechanical threshold can be measured experimentally by
determining the quasi-static yield stress under elimination of thermal
activation, i.e. at the absolute zero of temperature. In practice, of
course, this means by back-extrapolation to 0K.t Note that rate
effects cannot be eliminated by going to very small rates: this would
drive the ‘yield stress’ essentially to zero.

3.2.2. Normalization by the Shear Modulus (Temperature, Pressure )
The mechanical threshold can, in principle, be calculated on the basis
of dislocation theory (and a lot of statistics).! In almost all cases, it
comes out proportional to some elastic constant (the exception being
some precipitation hardened or ordered alloys, in which some inter-
face energy may be the ‘strength’ factor). Thus, it is really an elastic
strain that reaches a critical value at yield.

The elastic constants are functions of the temperature, and this gives
rise to a ‘trivial’ temperature dependence of the yield stress. For this
reason, the demarcation line between the two kinetic regimes should
not actually be taken as the (absolute) mechanical threshold (the yield
stress back-extrapolated to 0K), but as this stress divided by the
(temperature dependent) modulus.

t This back-extrapolation should be done from temperatures that exclude the
region of very small temperatures, because of various extra mechanisms that
occur in this regime,*>*® and it should be done on a plot of o2 vs. T2 1%
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All plastic processes are shear processes. Thus, it is some shear
modulus that is important; the bulk modulus should not matter. The
isotropic shear modulus is quite adequate for the purpose; in more
exact treatments, some modulus connected with dislocation properties
is more appropriate.! We shall use the symbol u for whatever the
appropriate shear modulus is. Similarly, we will generally characterize
the mechanical threshold as a critical value of a shear stress, and label
it £. In this terminology, the important quantity is

t/u(T, p) 3.1

Here, we have already incorporated another ‘trivial’ effect: the
dependence of the shear modulus on the hydrostatic pressure p (the
negative average normal stress). This is just one of the expressions of
elastic non-linearity, and in very-high-strength materials this may be
important (it is the major cause of the ‘strength-differential effect’)."
The hydrostatic pressure plays a special role inasmuch as it can reach
values much higher than the shear stresses, when these are limited by
plasticity.

For a rough estimate for close-packed metals, the following two
relations are useful:

ou

ou/po

— 20 = _0-5; ~2 32

oT /Ty, aplr (3-2)
where u, is the value of the shear modulus back-extrapolated to zero
temperature, and T, is the melting temperature.

3.2.3. OQwerstress, Dynamics

At stresses above the mechanical threshold, the rate of deformation is
checked by viscous drag on dislocations (usually due to
dislocation/phonon interactions). In this regime, it is useful to write
the crystallographic shear rate y in terms of the average dislocation
velocity v and the mobile dislocation density p,:

7V =bpmv (3.3)

where b is the magnitude of the Burgers vector. Under drag control, v
is proportional to the ‘effective’ (local) stress, which is zero at the
mechanical threshold and increases above. All quantitative calcula-
tions show, however, that this ‘effective stress’ is nor the difference
between the applied stress and the mechanical threshold, but a
strongly nonlinear function which asymptotes to the applied resolved
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shear stress 7 in the drag-controlled limit 7>> % (in practice 7> 2% is
ample).! Then

v=1b/B (3.4)

The drag coefficient B has an important characteristic: it increases
with temperature. (At high temperatures, it appears to reach a
constant value according to experimental information, although it
should be linear in T according to theory.") Thus, it is here not true (as
it is for thermally activated glide) that higher temperatures lead to
higher strain rates at the same stress.

The mobile dislocation density is a variable that is difficult to assess
independently; however, rather general theoretical considerations
suggest that it can depend on stress at most to the second power.
Thus, for viscous glide:

dlnt
Slnylr

>1/3 (3.5)

It is very rate sensitive. It can be distinguished from other processes of
high rate sensitivity (e.g. diffusional flow at high temperatures and
low stresses) by the necessity that the applied stress be larger than the
quasi-static flow stress at 0 K. In practice, this happens only at very
high strain rates. (Follansbee®® comes to the conclusion that this
process has not as yet been observed in macroscopic deformation of
polycrystals, in experiments up to about 10°s™'.) We shall not be
concerned with this regime in the remainder of this article.

Two other physical effects are important in some regimes of
dislocation dynamics: relativistic behavior, for dislocation velocities in
excess of, approximately, one-third the shear wave velocity; and
dislocation inertia, in the regime where drag is small, at low
temperatures (typically <20K). Neither of these falls within our
present ‘interest space’.

3.2.4. Thermal Activation

By far the most common cause for rate sensitivity is a lowering of the
flow stress (from.the purely mechanical threshold) due to the help
from thermal activation. The degree of lowering is the greater the
higher the temperature, and the longer the time available for thermal
activation (i.e. the lower the enforced strain rate). A quantitative link
between temperature effects and rate effects is always given, in this
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regime, by some form of Arrhenius law:
¥ = 7o exp(—AG/kT) (3.6)

involving a ‘pre-exponential factor’ 7, and an ‘activation energy’ (more
exactly, activation free enthalpy) AG. Both may depend on stress and
also on the mechanical threshold. Thus, the rate dependence of the
flow stress may be expressed (in its inverse) as

Lo (_8AG>” 57

1 dlny 1
T,% kT dlnt

m 3dinrt

_dlny,
T,% dlnt

The first term is typically small (0, 1, or 2), while the second term is
typically of order 100. Note that we have here specified the partial
differentiation to be at constant mechanical threshold: this is a
quantitative way of specifying ‘constant structure’ or ‘constant state’,
as was done in words in the introduction of the rate sensitivity in eqn
(2.1). (An observed rate sensitivity much greater than 0-01 almost
certainly indicates an observation not at constant structure, but under
control of evolution processes; see Section 5.2.4.)

The relation between activation energy and stress depends on the
specific interaction profile between dislocation and obstacle, and on
the way these are averaged over glidé by many dislocations over many
obstacles. It turns out that certain limiting considerations make the
final relation rather insensitive to all these details. A sufficient
approximation under most circumstances where temperature and
strain-rate play a significant role, namely when short-range obstacles
are rate-controlling, is'

AG = pb’go[1 - (/2y} = kT In(y0/7) (3.8)

where the exponents p and g are typically 1/2 and 3/2, respectively
(generally, 0<p <1 and 1=<g=<2). The normalization with ub> is
necessary when %o« pu; g, is the total activation energy (if no stress
were aiding) in units of ub>. We have also repeated eqn (3.6) in
inverted form at the end of eqn (3.8); 7, is typically 10®s™"."

Figure 7 shows this behavior schematically (as a thin drawn-out line)
for a value of g, that is far off-scale on the right. The heavy line
indicates typical real behavior. (For many examples, see reference 29.)
At very low temperatures (<50K) dislocation-inertia effects may
lower the flow stress slightly.>**® At very high temperatures (typically
above T,,/2), the flow stress is influenced by concurrent dynamic (and
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Fig. 7. Schematic temperature dependence of the yield stress (solid curve) and

the (extrapolated) saturation stress (dashed), after appropriate normalization

with the (temperature-dependent) shear modulus p. Our ‘interest space’

covers typically the range of temperatures from 50 K to half the melting point.

eventually also static) recovery: the drop occurs near where the
saturation stress (shown dashed) becomes lower than the extrapolated
‘constant-structure flow-kinetics’ curve. This regime is not well under-
stood. Thus, the ‘interest space’ we have chosen is approximately as
outlined by a heavy line in the abscissa. Temperatures above this are
treated only under evolution.

At intermediate temperatures, there is often a ‘plateau’ in flow
stress—at least apparently. This could have a number of reasons. First,
it can merely be an effect of a large g,, as plotted. Often, however, it
is assumed that there is an athermal contribution 7, to the flow stress;
then, 7 in eqn (3.8) would have to be replaced by 7 — 7,, and g, could
be much smaller. The plateau itself is not sufficient reason for such an
introduction of an-additional parameter; we shall discuss methods to
assess when this is warranted (Section 6.2.5).

When there are any solutes in the material, there are two further
reasons for plateau-like behavior at intermediate temperatures. First,
there should be a regime of dynamic strain-aging, which leads to the
‘hump’ above what would be the normal curve; this is indicated by a
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dotted line in Fig. 7. Second, there are theories of solution
hardening®-* that predict a dependence of the activation energy on
1/t (times some short-range function as in eqn (3.8)): this gives a very
slow decrease at higher temperatures.

Expressing the kinetic effects as influences on the flow stress, we

have
T kT y0>
t=pu.—.s{—In— 3.9
poes{psin (3.9)

(perhaps plus additional terms such as a 7). Here, s is the inverse of
the function given in eqn (3.8).

While the semi-logarithmic dependence of the flow stress on the
strain rate is thus founded in the physical mechanism of deformation,
the relation is often expressed as a power law:

T=n(7/7)" (3.10)

The exponent m is not identical to the rate sensitivity used in eqns
(2.1) and (3.7): it is the same only when m is independent of 7; in
other words, when the activation energy AG is proportional to the
logarithm of the stress. This is often sufficiently accurate over a
substantial regime. Note, however, that m should be expected to
depend on temperature if eqn (3.10) is merely a phenomenological
approximation to eqn (3.6)."

The quantities 7; and ¥, in eqn (3 10) are meant to be pairs of
values under reference conditions within the regime of validity of eqn
(3.10). They could, in principle, be replaced by % and y,; but note that
neither eqn (3.10) nor indeed eqn (3.6) holds near 7 = %, so that y, is
not a limiting value. In fact, in the neighborhood of the mechanical
threshold, thermal activation and dislocation drag superpose in a
complicated way.”’

3.2.5. Time Effects

In phenomenological plasticity, it is common to refer to ‘time-
independent’ plasticity and, by implication, to possible ‘time effects’.
From the physical point of view, we have so far only referred to rate
effects: these are in fact the most important ones.

However, there are some true time effects (which, of course, also
reflect themselves dynamically as rate effects). They are of two kinds:
recovery and aging. The first term is used for thermal softening (and
may, in this context, also include recrystallization); it is important only
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at temperatures above about T,/2, at the upper end of our ‘interest
space’, and we shall not consider it further here.

‘Aging’ refers to a change in the metallurgical structure with time:
e.g. precipitation of solutes into small particles, or segregation of
solutes to dislocations. It generally leads to a hardening—the more so
the longer the time elapsed (or the higher the temperature: this is what
led to the ‘hump’ in Fig. 7). When aging occurs dynamically, it leads to
a negative rate sensitivity. While this is not truly a ‘constant structure’
effect, but rather a time evolution, the time scales involved may be so
small that, for practical purposes, it acts like an ‘instantaneous’ rate
sensitivity. Since this may lead to instabilities in deformation, it is a
very important phenomenon. We will briefly discuss it in Section 3.2.

3.2.6. Stress Relaxation

The easiest test to measure kinetic effects is to merely stop the
machine and watch the load relax. This relaxation is not usually due to
a time effect, as discussed above (in fact, a time-strengthening, i.e.
aging, effect can never be observed this way?®), but is instead due to the
decrease of strain-rate with stress. The plastic strain rate is propor-
tional to the magnitude of the stress/time slope. Thus, a plot of this
slope vs. stress gives a good first evaluation (more appropriate than
stress vs. logt).

The low rate sensitivity of the flow stress means that the slope
decreases very rapidly—until it is hard to distinguish from zero. This is
another phenomenon that has tempted many observers to introduce an
athermal, ‘internal’ stress level—although it can be easily explained
without such a new parameter. (For further discussion of ‘internal
stresses’, see Sections 3.2.7 and 6.) ,

At long times, the stress relaxation test is more difficult to do
because it becomes very sensitive to temperature fluctuations; and it is
more difficult to interpret because, at very low rates, simultaneous
dynamic-recovery processes influence the results (much as they do the
flow stress above 7,,/2).>'* On the other hand, if one is really
interested in low rates, this is the quickest test.

The stress-relaxation test has other problems. The most important
of these is that transients, which are so instructive for assessing
material behavior, are very difficult to detect. Further, the small
strains incurred to not guarantee that one is in the ‘macroplastic’
regime (Section 2.1.1); in fact, it is generally recognized that anelastic
effects may play a significant role.*® Finally, if the stress-rate is ever
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important (which actually seems rarely if ever the case®™), it has the
opposite sign here.*** In conclusion, this author believes the stress-
relaxation test to be grossly overrated in its usefulness and reliability.
(See also Section 6.2.3.)

3.2.7. Strain Dependence
The most useful test of the flow-kinetics behavior of a material is to
investigate the rate sensitivity as a function of strain. The best way to
evaluate it is in the ‘Haasen plot’:*® mz (=At/AIn ) versus 7.”” Note
that this is not a relation between the ‘activation volume’ (which is
proportional to 1/mt) and the applied stress at constant structure: that
would give information on the obstacle profile, which is not very
sensitive (Section 3.2.4). Instead, it describes the evolution of the
(inverse) activation volume with structure, as measured by the flow
stress under standard conditions of strain-rate and temperature.
Figure 8 sketches various types of material behavior in a Haasen
plot, as abstracted from extensive work on pure and commercial
alloys:*"~° the data for pure materials (p) tend to back-extrapolate to
the origin (this is called the Cottrell-Stokes law*"); those for two-
phase materials (t) back-extrapolate to zero rate sensitivity at a

$p
/ t
d

a

Fig. 8. Appropriate plot to diagnose the relative rate sensitivity of the flow

stress, m, as a function of the flow stress itself (as both change with strain).

Typical behavior, starting with the yield point, is shown for pure, solution

hardened, and two-phase materials, as well as during dynamic strain-aging and

under solute-dragging conditions. A negitive rate sensitivity can cause
instability. >




28 U. F. KOCKS

positive stress (this is evidence of the need for an additional ‘internal
stress’ parameter); solution-strengthened alloys (s), on the other hand,
have a relatively high rate sensitivity at the yield stress; dynamic
strain-aging (a) causes a decrease of mt with strain (and may
eventually lead to a negative rate sensitivity and ensuing instabilities).
Finally, while all curves tend to start out as straight lines (which is in
itself evidence for a linear superposition of flow-stress mechanisms),
they all tend to give an accelerated rate of increase of the rate-sensitivity
when dynamic recovery becomes important at higher strains. An
extreme case of this is solute dragging (d), which occurs at tempera-
tures above a dynamic-strain-aging regime: here, the rate sensitivity
increases rapidly at high strains, but is is quite close to zero for a
significant range of stresses.

In conclusion, even though the rate sensitivity is small, its variation
with strain provides important clues as to which of many possible
mechanisms in a particular material actually contributes significantly to
the flow stress.

3.2.8. Conclusion
By far the most common cause of rate sensitivity at constant structure
in uniform deformation under ‘normal’ conditions (our chosen interest
space) is thermal activation. The rate sensitivity is small and serves to
lower the flow stress from the mechanical threshold. The effects of
strain rate and temperature are linked by the ‘Fisher variable™*?
kT In(yo/7); if the flow stress vs. strain-rate relation is expressed, for
phenomenological convenience, as a power law, the exponent is
temperature dependent. The smallness of these rate effects makes the
concept of a yield surface applicable and appropriate; the most precise
correspondence is to the mechanical threshold of dislocation theory.
This mechanical threshold is usually proportional to a shear modulus,
and through it depends on temperature (uncoupled from strain rate in
this instance) and on pressure.

While the ‘instantaneous’ rate sensitivity is so small that it may often
be neglected, its dependence on strain provides a valuable tool for an
analysis of important strengthening mechanisms.

4. POLYCRYSTAL PLASTICITY

Most materials are crystalline—but polycrystalline: they consist of
many grains, each of which consists of an ordered array of atoms (on a
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‘lattice’). Typical grain sizes are between about 10 um and 1 mm.
(Grain sizes beyond these limits do occur, but we wish to exclude them
from consideration here, because the large ones would usually not be
small compared to the macroscopic body dimensions, and the small
ones smaller than normal slip plane spacings.) The grain boundary
thickness is of atomic dimensions; thus, the deformation of the
polycrystal must be carried by the deformation of the grains.

The predominant mode of plastic deformation in single crystals is
crystallographic slip; twinning plays a role at low temperatures, at very
high strain rates, and in materials of low crystal symmetry (including,
however, hexagonal lattice structures); and diffusive flow is important
at high temperatures and very low stresses. Our ‘interest space’ was
chosen such that slip is the controlling mechanism. The deformation of
polycrystals then is some average over the crystallographic slips in
each grain.

The deformations in the various grains cannot be independent of
each other: certain conditions must be met at the interfaces between
them, and this is in fact the major role of grain boundaries. The theory
of polycrystal deformation consists essentially of treating these
interactions—once the properties of the grains are known. The
interaction may, however, influence the deformation mechanisms
inside the grains themselves and make them different from single
crystals. Thus, when we describe the plasticity of ‘crystals’ in the
following sections, we mean that of representative grains.

4.1. Crystal Plasticity

4.1.1. Kinematics
Crystallographic slip has one very handy characteristic: it leaves the
crystal lattice invariant (whereas elasticity changes both the spacings
and the angles in the crystal lattice). Thus, our choice of omitting
elasticity from the aspects of behavior we wish to treat (by concentrat-
ing on strains larger than, say, 0-2%) affords us a major bonus: an
ingrown coordinate system. In fact, even if elasticity were added, it is
an entirely appropriate way (see Sections 2.1.2 and 4.2.6) to treat
plastic properties as those remaining after unloading (and to consider
continuous deformation as a series of loadings and unloadings). Then,
all the following relations are to be viewed as being in the unloaded
state.

In general, the material properties are given in terms of the
crystallographic axes (or in terms of axes of anisotropy for non-
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random polycrystals) and must be related to the macroscopic coordin-
ates for the solution of any particular boundary-value problem. This is
the general meaning of ‘orientation’. The material constitutive rela-
tions specify the relation between the ‘true’ (Cauchy) stress and the
(true) strain rate, as well as the evolution with a (true) strain
increment, in these property-reference axes.

Slip occurs on various ‘slip systems’: crystallographic planes and
directions in which ‘simple shear’ takes place. If there is more than
one such system (as always in grains of a polycrystal), the best
coordinate system to choose is not usually one aligned with the slip
elements, but one coincident with the crystallographic axes. We shall
imply a cubic lattice here, and choose our coordinate system parallel
to the cubic axes. (When the lattice coordinate system is not
Cartesian, all relations are still valid, so long as one describes plane
inclinations and spacings in the reciprocal coordinate system.)

If the incremental amount of simple (‘engincering’) shear in slip
system s is called dy®, then the incremental (plastic) ‘distortion tensor’
(displacement gradient tensor) in the crystal coordinate system is given
by

u

od i s s

J

where du is an incremental displacement of a point at location x (in
the crystal lattice) and /; is the tensor transformation matrix from the
coordinates of the slip system to the ‘crystal coordinates’. (If the
components of the slip direction in the crystal system are b;, and those
of the slip plane normal are n;, [; = b;n;.)

In egn (4.1), we have introduced incremental quantities related to
distortions and strains.. These are meant to be infinitesimal, but not
necessarily total differentials of (state) functions.**** Another common
practice (more common presently) is to use rates. These can be
obtained by dividing both sides of eqn (4.1)—and of all following
equations that employ the differential symbol d—by dt, again without
implying that deformation ‘rates’ are total derivatives of any quantity
that measures finite strain. In this article, we use increments in order
to keep clear of the implication that directions in strain space have
anything to do with the physical speed with which a process occurs (a
scalar rate). Either increments or rates are appropriate in the spirit of
state-plus-evolution descriptions; it is imperative that history variables
such as any measure of finite strain be avoided.
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The change in all material lines with respect to the crystal lattice is
fully described by eqn (4.1): both in their length as in their orientation
with respect to the crystal lattice (and, by implication, their change in
angle with respect to each other). Since the element does not generally
remain cubic in shape, a specification of its ‘orientation change’ (or its
‘rotation’ with respect to the lattice) requires further thought.”’ What is
actually meant by the orientation change of a grain is the change in the
relative orientation of the lattice and certain material lines and/or
planes. In simple cases, these are the plane and line kept constant in
the macroscopic experiment. For example, in rolling, the rolling plane
and the rolling direction are kept constant (and are the coordinates in
which the stress and strain state are related to the boundary
conditions); but, for example, a plane that was initially perpendicular
to the rolling direction need not remain so.

If the incremental displacement gradient tensor in machine coordin-
ates is labelled dB;, then when a plane i remains parallel to itself,
dB; =0 (j #i); and when a material /ine j remains parallel to itself,
dB; =0 (i #j). The components of the (‘relevant’) orientation change
dQ; are given by the values of df; for those three components in
which dB; =0. Thus, the orientation change is not, in general, the
antisymmetric part of the distortion tensor dg;.”!

The incremental strain, on the other hand, is always the symmetric
part of the incremental distortion tensor. We write

de; = mj;dy’, my = %(lzs; + 1) (4.2)
The ‘Schmid factor’ m; plays the role of a ‘strain direction’. a unit
‘vector’ (Section 2.2.1) in strain-increment space for each slip system.
4.1.2. Work Increment and ‘Resolved’ Stress
Consider now the increment of plastic work per unit volume:¥

where ¢ is the true stress applied to the volume element under
consideration. Use of eqn (4.2} in the second part of this equation has
produced a scalar

o*=mjo; (4.9

t Summation over repeated (upper or lower) indices is always implied. When
pairs of indices are repeated, a sum over all pairs is meant.
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It is the value of the resolved stress in system s, or the projection of the
stress vector on the direction of the strain-increment vector, or the
work-conjugate to the crystallographically defined scalar strain-
increment measure dy in that system.

The ‘Schmid law’ states that this resolved stress must reach a critical
value for system s to operate.> Then, the yield condition is

o*(o;)=1(T,p, ¥°,...) 4.5)

Note the essential difference between o° and t° (even though both are
shear stresses; see eqn (4.4)). This difference is emphasized by the
functional dependences written explicitly into eqn (4.5): o° is a
function of the applied stresses (representing the weights on the body;
see Section 1); 7° is a material property, a special case of the ‘plastic
resistance’.* Ideally, it should be the mechanical threshold # (the
rate-independent value of 7° at T = 0K), but eqn (4.5) allows for the
more realistic case of a flow stress at finite temperature—which is
lower because of u(7T) and, in addition, because of thermal activation.
For the latter reason, the strain rate y° on system s is also relevant.
The pressure dependence of 7° is a stress dependence of a different
nature from that of 6°: it is an effect on the state of the material, for
example because of u(p), or because of a change in the dislocation
core structure with pressure. In principle, ° may even depend on
deviatoric components of the applied stress.

We shall always use o’s for applied stresses (or functions thereof ) and
T’s for material properties. The difference is crucial; if the particular
terminology is not desired, two different symbols must in any case be
found for ‘stress’ and for ‘strength’.t (For consistency, the yield
strength should not have been called o in Fig. 1, but 7y, with some
orientation factor.)

4.1.3. The Plastic Potential

Since the scalar stress measure o° was chosen as the work-conjugate of
the scalar strain-increment measure dy* for single slip (eqns (4.2) and
(4.4)), it follows immediately that}

do®
de; = a0,

i

dy* (no sum on s) 4.6)

T The new DIN norm uses R for the plastic resistance.
1 The equation does hold for multiple slip when it is summed over s, but this is
here not intended.
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In words, if ¢° is known as a function of o, it acts like a plastic
potential for single slip: the direction of the plastic strain increment is

parallel to the gradient of ¢%; it is normal to a surface
o*(o;) = constant 4.7

where constant means independent of stress. In the yield condition
(4.5), the right-hand side was 7°—which may or may not be independ-
ent of stress; we have seen that 7° does, in principle, depend on
pressure, at least through the shear modulus. ‘Normality’ (of the strain
increment on the yield surface) holds when the material strength
parameter is insensitive to stress. This is generally true for metals in the
regime of interest here, but it is, for example, grossly untrue in
polymers.* .

It should also be mentioned that normality may be violated for
another reason: namely, when some strain increment component may
be indirectly caused by plastic deformation; for example, a change in
volume because of vacancy or dislocation generation. This is also
usually negligible (see Section 2.1.5).

In summary, the ‘resolved stress’, i.e. the scalar stress measure that
is work-conjugated to the scalar plastic strain-increment, is the plastic
potential (for which normality is true by definition). Normality of the
strain-increment on the yield surface is not a general principle, but
may or may not hold depending on the class of material and the range
of the imposed conditions. It generally holds for the ‘interest space’ we
have defined in Section 1, and we will thus be lax in keeping plastic
potential and yield surface separate.

4.1.4. The Yield Surface of Single Crystals >

Descriptions in stress space are most convenient in ‘vector’ (5X1
matrix) notation (Section 2.2.1). With some fixed assignment of the
single (Greek) subscripts to the five independent pairs of double
subscripts, one can then write eqns (4.4) and (4.5) as

mio, = 1° (4.8)

This is a set of planes (if 7° is independent of the stress component
0°),t one plane for each slip system s. The yield condition specifies not
only that eqn (4.8) must be fulfilled for every active system, but also

1 When 1* depends on the stress state, the yield surface may even be concave;
the plastic potential is convex by definition.
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that o* < v° for every other system. Thus, the yield surface is the inner
envelope of the planes specified by eqn (4.8). Each of these planes has
intercepts T/m$ on the v-axis.

Figure 9 illustrates the typical topology for three slip systems (a, b,
¢). The inner-envelope construction means that systems ‘a’ and ‘c’
cannot operate simultaneously under any stress state. Whenever more
than one system is active, the stress vector must be at a ‘vertex’ in a
space the dimension of which equals the number of independent
systems operative. Some slip system combinations are not independ-
ent; imagine: the vertex of an octahedron in three dimensions: four
planes meet, but only three (non-coplanar) strain directions are
necessary to compose an arbitrary strain vector.

Vertices in the single-crystal yield surface play a major role in
polycrystal plasticity. It is convenient to define normalized vertex
vectors MY such that the stress for a particular vertex v is

a,=Mt 4.9)

where 7 is a single scaling parameter for the yield surface. To fulfill the
yield condition, we must have (eqn (4.8))

Mm =11 (4.10)

for each active slip system s in the vertex v. The right-hand side is
equal to 1 when all slip systems have the same critical resolved shear
stress (and then the left-hand side is 0 for all non-active slip systems in
the case of fcc crystals).

Fig. 9. Schematic single-crystal yield surface: three facets for the slip systems

a, b, and ¢ (each in one of their possible signs). To activate two systems

simultaneously, the stress must be at a vertex; some systems (such as a and c)
cannot be activated simultaneously.”
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Another relevant quantity is the work-conjugate of t; in the special
case outlined above, it becomes the algebraic sum of shears:

dr =dW/7 = M} de, = Mim3 dy* (4.11)

Observe the following duality. A stress vector of arbitrary direction
will generally produce slip on a single system (it will touch a single
facet of the yield surface); thus, it will produce one of a few discrete
directions of straining. This is, for example, seen in free single crystals
under tension. On the other hand, if one imagines the direction of the
strain-increment vector as given, the stress must be one of a small
number of discrete values: the vertex vectors. It is evident from the
plastic potential concept that the prescribed strain direction must be
contained in the cone of normals of the active vertex.

There are two dual kinds of non-uniqueness associated with the
facets-plus-vertices nature of the single crystal yield surface: if one
happened to prescribe a strain direction that is identical to one of the
facet normals, the stress direction is not unique; and if one happened
to prescribe a stress vector that points precisely into a vertex, the
resulting strain-increment direction is not unique.

Finally, there is an ambiguity at those vertices in which more facets
meet than is the ‘order’ (dimensionality) of the vertex: then, a given
strain-increment vector cannot uniquely be decomposed into shears on
the activated slip systems. This has been a topic of much discussion in
the theory of polycrystal plasticity, since the strain in the grains is
presumed completely prescribed (in 5 dimensions) in the most
prominent model,*® whereas the vertices in highly symmetric materials
always activate more than 5 slip systems.

4.1.5. Rate Sensitivity
As we have pointed out above (Section 3.6), the most precise
definition of the yield surface is as the (rate-independent) mechanical
threshold; but the typical rate sensitivities are so low that a ‘flow
surface’ can be defined for a constant strain rate, which differs only
very little from the limit yield surface.®

Figure 6 showed (exaggerated) the typical rate effect: a slight
lowering of the flow stress from the mechanical threshold. Thus, for
each single slip system, a constant shear rate y will correspond to a
plane parallel to the rate-independent yield facet, slightly inside it
(Fig. 10).

When two or more slip systems operate, however, each one can
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Fig. 10. The mechanical threshold provides a ‘true’ yield surface, in the

rate-independent limit. Thermal activation lowers the stress needed for a given

strain rate. Where two slip systems operate simultaneously, the yield surface

vertices become rounded.® The relative decrease in stress is progortional to the
relative rate sensitivity, typically of order 0-01.*

operate at a lower shear rate to produce the same macroscopic strain
rate, and thus at an even slightly lower stress. Thus, the ‘flow surface’
near a vertex gets rounded; this eliminates all problems of non-
uniqueness. Note that, in order to achieve this very convenient result,
the rate sensitivity need not be large; it only must exist in principle
(and be positive definite). Thus, the concept of an essentially rate-
independent (a ‘rate-insensitive’) plasticity, but not a strictly rate-
independent one, allows one to use the methods of classical plasticity
theory, including (sharp) yield surfaces, while avoiding some of its
pitfalls.*7*3

When the rate sensitivity is low, the (true) vertices become sharp
‘noses’ (Fig. 10). These still have the characteristic that a very small
variation in stress direction can produce a very large variation in
strain-increment direction. This property of a vertex is important in
the consideration of instabilities. The change from a true vertex to a
sharp nose eliminates the possibility of bifurcation; but it leaves intact
the sensitivity to small fluctuations, which may (or may not, depending
on other factors) lead to instability.*

We shall, in the following, use the term ‘vertex’ to signify a sharp
nose, whether it be continuous or discontinuous.

4.2. Averaging over a Polycrystal
4.2.1. Nomenclature

We have already introduced the vector notation for stress and
strain-increment, which we write in extended form with single (Greek)
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subscripts that go from 1 to 5. The particular association of one Greek
subscript with one pair (or an independent combination) of Latin ones
is arbitrary; different ones have been used. Two conditions should,
however, be met: that the stress vector and strain-increment vector be
work-conjugated, so that

dW = o, de, (4.12)

and that, if the coordinate system is not Cartesian, the strain-
increment vector be measured in reciprocal space, i.e. by the inverse
axis intercepts of a plane perpendicular to it.

The relation between stress and strain-increment on the yield
surface does not involve the magnitude of the strain increment, only
its direction, It is convenient to define such a ‘magnitude’ and

‘direction’;>

de, =€ de (4.13)

The straining direction €° should be normalized in some fashion. It has
become common to do this such that, in uniaxial tension, the scalar de
is equal to the measured increment in tensile strain; then

£eY =3/2 (4.14)

Inserting eqn (4.13) into eqn (4.12) leads to the definition of a scalar
stress measure:

o=0,¢" (4.15)

which, when multiplied by the scalar de, again gives the work. It is
equivalent to the resolved stress in single crystals, and we will retain
this descriptive nomenclature for the general case. o is the distance in
stress space from the origin to a plane perpendicular to €° that is
tangent to the plastic potential surface. In fact, the scalar o is the
plastic potential, much as the resolved stress on a slip system was
shown to be the plastic potential for single slip (Section 4.1.3). If the
resolved stress is constant, you get the von Mises sphere in deviatoric
stress space; but, in general, the distance ¢ may depend on the
direction €°.
One may also define a stress direction ¢° so that

o,=0% (4.16)

Note that ¢° is not normalized to its length, but to its projection on &°
(eqn (4.15)). If one gave o as a function o(e°), it would be a plastic
potential in the conventional sense.
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For vertex stress vectors, one may finally write, with eqns (4.10) and
(4.15):

oc=Mc%t1=Mr1 (4.17)

where a scalar M, the normalized Taylor factor, has been defined as
the projection of a vertex vector on the prescribed normalized strain
direction.”® (Note that this normalized definition differs from the
standard one for deformation modes other than uniaxial tension or
compression.) M is the spacing of tangent planes of the yield surface
normalized to the scalar 7. The stress direction becomes

o%=M,/M (4.18)

The ‘maximum work’ postulate by Bishop and Hill”’ gives a
prescription for the derivation of the correct value of M for any given
strain direction: it is the greatest of all those for any vertex on the
yield surface; this guarantees that the prescribed strain direction is
contained in the cone of normals of the activated vertex.

4.2.2. The Model

A grain in a polycrystal finds itself under a number of boundary
conditions on stress and strain-increment. (In this section, we address
total, not deviatoric, stresses and use the symbol o for these.) A useful
idealization is that some strain-increment components are prescribed
and some (the complementary) stress components are prescribed. If
we mark the prescribed components by an overwritten double bar,
and furthermore assume that any prescribed component is equal to the
average (single bar), we have

dg, = dg, (p values of v)
_ _ (4.19)
0, = 0, (6 — p values of k #v)

where any prescribed stress component is usually zero.

There is an easy case in which eqns (4.19) in fact give the complete
(approximate) solution: that of plate-like grains, with large planar
interfaces (the interactions across the other interfaces being neg-
lected). Across a planar interface, there are three continuity condi-
tions on strain and three (the complementary ones) on stress. Thus,
both compatibility and equilibrium can be fulfilled.**>*

Another easy case is the upper bound solution: all plastic strain
increments are considered prescribed (p = 5); the one remaining stress
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condition is on the hydrostatic stress (which is here conveniently set to
zero). In this case, compatibility is fulfilled a fortiori, but one
renounces on fulfilling equilibrium. This upper bound has been
considered a good approximation for large-strain plasticity. A jus-
tification can be given as follows:> The internal stress distribution
necessary to fix up the violations of local equilibrium will disturb the
compatibility conditions only by elastic strains, small compared to the
plastic ones. On the other hand, violations of compatibility that are
being fixed up elastically would add enormous stresses. Thus, a
sensible approach to approximate polycrystal plasticity theory is: ‘com-
patibility first’. This is the essence of Taylor’s model,*® which is used
as a basis for most current simulations of polycrystal plasticity.*”-3%¢

Compared to this completely constrained upper-bound solution, the
more general approach of eqns (4.19) has been called ‘relaxed
constraints’ (RC): only the most important compatibility conditions for
a given grain shape are fulfilled by prescribing the respective strain
components to be uniform; equilibrium is fulfilled for the remaining
components.’**

4.2.3. The Calculation™

For each grain, one must determine which stress components can be
prescribed (to be zero) and then investigate the yield surface in the
subspace o, =0 for 6 — p values of k. This subspace is p-dimensional.
The yield subsurface has vertices of order p, with vertex vectors
¢'=M't. Among them, the right one (components o,) for the
prescribed strain-increment in this subspace (components de,) follows
from the geometric criterion

(0, —0})dE, =0 (p values of v)

or, normalizing both the stress and the strain increment:

(M, — M)EV=0 (4.20)

This is an extension of Bishop and Hill’s® maximum work hypothesis
to relaxed constraints, proved by Renouard and Wintenberger.*®

As a result of the calculation, the unknown stress components o, of

the correct vertex fulfill the conditions
0,89 =Mt (4.21)

and, according to the model (or at least as an upper limit), the
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polycrystal stresses must fulfill the same condition for the averages:
0=0,8=Mt (4.22)

In truth, the right-hand side should be averaged as a product;
however, it has been found that the error is small. (Alternatively, one
may interpret the quantity T as a weighted mean, weighted by M; this
has been called 7.>%)

Equation (4:22) is, again, for arbitrary stresses, an equation of a
plane perpendicular to the direction &°, at a spacing M7 from the
origin. M depends on the crystallographic orientation distribution
function of the grains in the polycrystal, and on the direction of the
prescribed strain increment §°; 7 depends on the substructural state of
each grain. The inner envelope of all these planes constitutes the yield
subsurface for the polycrystal in this space.

While this ‘inner-envelope construction’ of the (upper-bound) yield
surface follows directly from the maximum-work principle (4.20), it is
sometimes more convenient (and will be needed later here) to know
the locus of the stress vector itself. In fact, Hutchinson®® has described
the polycrystal yield surface by

o, =M,7 (4.23)

(again with the proviso that 7 is a weighted mean). This can be shown
to hold under at least one of the following two assumptions: (a)
equilibrium everywhere, which would seem to be inconsistent with an
upper-bound model; or (b) normality assumed for the polycrystal
independently from the single crystal. (Normality for the polycrystal
can be derived from that of the single crystal only by assuming
equilibrium.) As we have shown, normality does not need to hold (and
in fact does not hold when 7 depends on the stress state). However,
for the plastic potential, normality holds by definition— for the
polycrystal too. Thus, we will make use of relation (4.23) without the
factor T: the plastic potential of the polycrystal is the five-dimensional
locus of the vector M.

The strain components in the unprescribed directions (where the
stress is zero) follow, with eqn (4.2), from the crystallographic shears,
which are a solution to the p equations (see eqn (4.19))

de, =m}, dys (424)

(modified near vertices at which the number of slip systems s exceeds
the number of prescribed components A according to the rate-
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sensitivity criterion; Section 4.1.5). These crystallographic shears also
determine the orientation change, according to eqn (4.1).

The average algebraic sum of shears (or, more generally, the work
conjugate of 7) follows easily, as in eqn (4.11) and using eqn (4.17):

df = M dg (4.25)

In some theories of hardening, dI" plays a physical role;*® but even
when it does not it can serve as a handy ‘microscopic equivalent strain

increment’.®°

4.2.4. The Yield Surface of Polycrystals

The method described above has been used to calculate polycrystal
yield surfaces after various simulated deformations® (and also to
calculate stress/strain curves for various proportional tests®’). Figure
11(a) shows one of the most interesting applications: the yield surface
after a torsional shear of 1-0, in the subspace that also displays the
normal stress and strain-increment along the torsion axis. It is seen
that, if the longitudinal stress is kept to zero (‘free ends’), there results
a component of the strain-increment direction in the ‘lengthening’
direction: this, we feel, is the best explanation of this well known
effect so far. Conversely, when the ends are fixed (which is the
boundary condition under which the prestrain was run), an axial
compressive stress develops.

The two effects are shown‘ quantitatively in Fig. 11(b). The
surprising result is that they are not proportional to each other—and
this is actually observed.®” Thus, they are not just two ways of
expressing the same thing. The yield surface in Fig. 11(a) may help in
understanding this phenomenon.®" The length change of a ‘free’ tube is
proportional to the inclination of the yield surface at the loading point;
but the compressive stress in fixed-end torsion depends on the location
of the apex. The two are not necessarily related (except in sign); the
shape of the yield surface is quite irregular.

The irregularity of the yield surface is a very general observation.
Figure 12(a) shows one after simulated rolling to a true through-
thickness strain of 3-0, in a space of two shear stresses. In an isotropic
material, the yield surface would have to be a circle in this space,
regardless of any assumptions (von Mises or otherwise). In classical
treatments of anisotropy, it would be an ellipse® or an oval of some
kind.®® It is neither, it has vertices. At this strain, the texture is not
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Fig. 11. (a) A polycrystal yield surface derived by computer simulation,®* after

torsion to y;, = 1, with fixed ends. Continued shear with fixed ends demands a

compressive stress (at the apex to the left); continued shear with free ends

would give the length change corresponding to the inclination of the normal at
the top.

yet very sharp—mnot at all like a single crystal (for which one would
expect vertices).

Finally, Fig. 12(b) shows the same yield surface, but now in the
‘m-plane’: where the three interdependent normal stresses make a
tristar. Note that the normal stresses are here meant to lie in the
directions of the (orthotropic) texture symmetry, not necessarily in the
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Fig. 11. contd. (b) Experimental results® for both cases.

principal axes. The most obvious feature of this yield surface is the
sharpness of its vertices. Note also that the long flat region perpen-
dicular to the previous rolling direction is the edge that corresponds to
the vertex in the direction of the abscissa of Fig. 12(a).

The yield surfaces shown here were derived on the basis of a
computer code at various stages of its development: they are not to be
taken as quantitatively reliable results. However, all polycrystal yield
surfaces we have ever derived, after strains in excess of about 50%
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Fig. 12. Calculated polycrystal yield surface after plane-strain rolling to a

thickness reduction of 95%. An isotropic yield surface would have to be

circular in the shear space (a) and would be circular under the von Mises

assumption in the normal-stress-deviator plane (b). The calculated yield
surface shows vertices and flat spots.
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from an isotropic start, had vertices, ridges, and flat spots. (It appears
that they are particularly prominent under ‘relaxed-constraints’ (flat-
grain) conditions.) Vertices are very hard to observe experimentally;
nevertheless, some indications have been seen. More clearly, ‘flat’
regions have been identified in some cases.%

The most important consequence of vertices is that they may lead to
instabilities.®” This has been treated in some detail both for the ridge
perpendicular to the rolling direction (using the plane-strain idealiza-
tion for the rolling process), which can be one cause of ‘shear bands’,*®
and for localized necking in sheets, which can be explained on the
basis of the sharp vertex in Fig. 12(b).

As in the case of single-crystal plasticity, rate dependence will round
off any polycrystal vertices. However, the corner would (because of
the quantitatively low rate sensitivity) remain very sharp. Then,
minute internal stresses could lead, in practice, to the same kind of
non-uniqueness that true vertices represent.

All the yield surfaces shown so far have been projections into a
particular two-dimensional space. The most general yield surface
would have to be plotted in five dimensions. However, in two
interesting cases, three dimensions are actually sufficient (and only one
octant of three-dimensional space, when there is no sign dependence
of yield). One of these is a fiber texture, the other an orthotropic texture
(such as in a rolled sheet) when only plane-stress conditions are
encountered (such as in sheets). In both cases, these subspaces are
‘closed’: an arbitrary stress in this space gives rise to strain-increment
components only in this space, and vice versa. The figures are
simultaneously sections and projections of the five-dimensional yield
surface.®’ Such symmetry relations can be of crucial help in treating
anisotropic materials.

4.2.5. Constitutive Relations for Anisotropic Plasticity

The rapid development of extensive flat spots and rather sharp ridges
and vertices on the plastic-potential surface of polycrystals during
deformation makes a description in terms of functions difficult if not
impossible. Perhaps some scheme will eventually be found that
abstracts the essential features of realistic yield surfaces in a useful
way. For now, it would seem that one must employ a tabular
approach. What is needed is a table of the stress direction ¢° for each
strain-increment direction €°. Unfortunately, this table will change
with strain, since the shape of the yield surface changes. A help is that




46 ‘ U. F. KOCKS

the symmetries of the material (if known) and of the test to be
performed can substantially reduce the space in which €° must be
scanned (Section 4.2.4).

The relation between ¢” and €° may be expressed in matrix form:

0% =P, (4.26)

Note, however, that P is in general different for each direction &% it
does not transform like a fourth-rank tensor as Hart assumed.*! Also
note that it is substantially different from a ‘plastic modulus’: it links
strain-increments (or rates) with (total) stresses. This is because we
elected to treat plasticity only, and in terms of a flow-rule-type theory,
not a modification of an elastic one. Dimensionally, it is like a
viscosity; but it has nothing to do with kinetics.

A table of the 5 5 matrix P for each vector £ may sound more
cumbersome than a table of the vector ¢° vs. €. However, under many
symmetry conditions, P may have simple properties. For example, in
isotropy

P, =90, 4.27)

in any subspace defined by shear axes only (including differences
between diagonal components), as a consequence of isotropy itself,
and further in the deviatoric principal plane under the assumption of a
von Mises potential. In anisotropic materials, eqn (4.27) may hold
exactly for some subspaces, and may be an acceptable approximation
for some other regions. Conceivably, one needs to explore the real
nature of P only near extensive flat spots or sharp vertices that may be
reached in the expected application.

Given the table P(¢%) and, as we shall need, M(¢"), we now imagine
a polycrystalline material element under strain-increment boundary
conditions in a p-dimensional subspace:

dg, =85dZ  (p values of v) (4.28)

where the double-bar, as before, means ‘prescribed’. The average
deviatoric stress in this subspace follows from :

o, =P, E5M%  (p values of u) (4.29)
The evolution of P and M must be calculated or measured and is to be

tabulated. That of 7 follows from the strain-hardening rate 6 =dt/dI’
to be discussed in the next section, where

dr= M dg (4.30)
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We have implied above that the subspace in which the strain-
increments are prescribed may have p <5 dimensions. This applies
only when a relaxed-constraints theory is appropriate. For example, in
a cold-rolled sheet, all grains are likely to be flat and parallel to the
sheet; then, the normal stressin the thickness-direction may be
relaxed on the individual grains and prescribed (to be zero) on the
surface. To allow, in general, for such a case, let us specify that
stresses are prescribed in 6 — p dimensions; one of these prescribes the
hydrostatic pressure. From the others follows

e9=P; 162  (5—p values of A and «)
and (4.31)
dEA = Eg dg

At this point, the entire (average) stress state is known; it can be
inserted into 7(o), if there is such a dependence, and then the yield
surface is described by the five-dimensional locus of

o =M, {Q)) T, T,0,¢) (4.32)

while the plastic potential is just the locus of M. Here, the vector M
has been re-introduced for ¢”- M (eqns (4.18) and (4.23)), and its
dependence on the orientation distribution has been expressed by the
set {Q} of orientations Q. Furthermore, the dependence of the plastic
resistance T on its primary variables temperature and strain rate, on
the stress state, and possibly on the straining direction has been
explicitly stated.

4.2.6. Adding Anisotropic Elasticity

So far, we have deliberately ignored elasticity. The strain-increment,
whose direction played such a crucial role in determining the stress
state necessary for plasticity, was taken to be the total (deviatoric) de.
In truth, this should have been the plastic strain increment.

The following iterative procedure, in a step-wise calculation, may be
used to take account of the change in the direction of the plastic
strain-increment Ag at a given total strain-increment Ag', due to the
direction of the elastic strain-increment Ag®. Assume first (as we have)
that AeP = Ae', and calculate the values of ¢’ both before and after the
step. Then use the difference between these two stress values to
calculate the deviatoric part of the elastic strain-increment, and finally
subtract it from Ag' to determine a better approximation of Ae’:

Ae? = Ae' - S Ag’ (4.33)
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where 8 stands for the anisotropic deviatoric elastic compliance (a
fourth-rank tensor). All quantities are written in the (stress-free)
lattice coordinate system; elastic rotations may safely be neglected.

There is one set of problems where adding elasticity is not an option
but a necessity (even though only the plastic response may be of
interest): that is when parts of a body, at some time, may not actually
be plastic. This could well occur in cases where the single crystal yield
surface is very elongated (or even open in some directions of stress
space), or is simply very large in some places (e.g. in a two-phase
material). None of this would pose any problem if the local stress were
completely known: one could check whether it is inside the yield
surface or not. But, under prescribed straining conditions, the yield
conditon could only be verified by assuming the total strain increment
to be elastic and checking for the location of the resulting stress. As in
all cases, incorporation of rate dependence alleviates the problem also
here.

5. EVOLUTION

It is part and parcel of a state-parameter description that the evolution
of the parameters must be described: that is how history makes its
impact on the future behavior. There have been many discussions of
flow-stress evolution and various transients in strain-hardening that
make further parameters necessary.”” However, there has been very
little discussion concerning the effects of the change of textures, and
thus of average orientation factors, during deformation.> Instead the
multiaxial behavior has been described by various postulates. We will
compare these with physically expected behavior.

5.1. Texture Evolution

5.1.1. Hardening Rules
The most evident effect of deformation on the calculated yield surfaces
of the last section is a change in their shapes. This is not accounted for
by any of the classical assumptions on ‘hardening rules’: they have
postulated only a change in size (‘isotropic hardening’) and a change in
location of the yield surface in stress space (‘kinematic hardening’).”
The difference between these postulates and the ‘real’ behavior, as
exemplified in the foregoing section, is not negligible, because of the
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developing vertices: while the difference in the absolute value of the
resolved stress ¢ may not vary too much with direction in stress space,
the angle between the stress direction and the strain-increment
direction varies widely and abruptly. (In the von Mises model, this
angle is zero and o is constant for all directions.)

It would appear that a new formulation that takes some account of
angular yield surface shapes must be developed. Until such a com-
prehensive treatment is available, a realistic assessment of yield
surface evolution can only be obtained by direct measurement (which
is especially difficult near vertices)—or by the measurement or
calculation of textures, from which yield surfaces are to be calculated.

To calculate texture changes, one must carry the polycrystal model
(Section 4) further: the distortion rate (eqn (4.1)) must be calculated
from the slips on all systems, which can be unambiguously obtained by
using rate dependence (eqn (3.10)) to invert the yield condition (eqns
(4.4) and (4.5)).

In addition to changes in shape, there is, of course, a change in size
of the yield surface: it increases with strain as t does (‘isotropic
hardening’; Section 5.2). For two-phase materials, one would, in
addition, expect some ‘kinematic hardening’ (Section 7). Finally, there
is some evidence for a phenomenon that may be called ‘lateral
hardening’:’' a slight additional growth of the yield surface in
directions perpendicular to the previously applied straining direction.
It would be expected as a consequence of ‘latent hardening’ in single
crystals (see Section 5.2.1).

5.1.2. Texture Hardening and Texture Softening
In eqn (4.15), we defined a scalar stress parameter o that characterizes
the spacing of a tangent plane to the yield surface (and depends on the
strain-increment direction, i.e. the inclination of the tangent plane).
The change of this ‘resolved stress’ with the scalar equivalent strain
increment de is an expression of (multiaxial) yield stress evolution.
With eqn (4.22) it is
do dM _dt

=4 T de +Md£ (5.1)
These are averages over the polycrystal, but we have dropped the bar
over the o. (Also, the possible dependence of 7 on strain rate,
temperature, etc. has not been explicitly stated in eqn (5.1).) The first
term on the right-hand side is due to a change in texture, the second to
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a change in dislocation structure. The latter is actually related to the
crystallographic shears in the grains, so that eqn (5.1) is better written,
with the aid of eqns (4.11) and (4.16), asT

d dM . di -,
@:—qu—q-Mzd—;EiM/-l-MzH 5.2)

Here, the standard symbol, 6, has been used for the microscopic
strain-hardening rate, and M’ has been used for the change with strain
in the average Taylor factor due to texture development. This change
is due not only‘to the change in orientation of each grain per se, but
also to the abrupt change in the activated vertex that such an
orientation change occasionally entails.

The texture development can cause additional hardening; for
example, in the tension (or wire drawing) of fcc metals, a (111) fiber
texture develops, which has the highest Taylor factor for uniaxial tests.
On the other hand, it is also possible for a material to exhibit texture
softening under certain conditions, and that has the most serious
consequences: it can lead to instabilities even at a positive (micro-
scopic) strain-hardening rate 6.7 The most potent combination for
such a development is a vertex in the yield surface with texture
softening occurring for one of the strain paths allowed in the vertex.

5.1.3. Path Dependence

Until now, it has been common to treat yield surface evolution as
consisting of two aspects: the change in the yield surface (size,
location, shape, etc.), and the rate of change with strain of the scalar
parameter (or parameters) that describe it. It is, however, realized
that this rate of change may itself depend on the strain path. For
example, the texture that develops in torsion is different from that in
tension, and the latter is different from that developed in compression.
The change in yield surface shape will consequently also be different:
sometimes the direction of prestraining is the hardest, sometimes not.
(This is possible even when microscopic hardening is isotropic.)
Unfortunately, there seems, at present, no general way of accounting
for all these different possibilities—except by explicit texture calcula-
tion (or measurement) at every step.

t Note that this hardening is scalar in nature; an introduction of tensor
stress-rates is not necessary when the lattice orientation change has been
accounted for in this way (and when there is no kinematic hardenmg)
However, ©® may well depend on €” (or ¢°).
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A path dependence of macroscopic strain hardening can, in addi-
tion, be due to a path dependence of microscopic hardening. For
example, the rate of dislocation accumulation appears to be smaller in
torsion than in tension, perhaps because of the smaller number of slip
systems that are significantly active.”

Both of these types of path dependence can, finally, make them-
selves felt during path changes: here one would expect significant
transients. For example, since the range of orientation space that is
filled after some heavy deformation is quite small, the re-orientation
under the new test conditions may not lead to the same end texture as
would be expected from a random start—or it may take much strain to
convert to the new ‘equilibrium’ texture.

More potently, dislocation structures accumulated under one set of
conditions tend to be unstable under other conditions; thus, one would
expect a temporary softening, possibly an instability, upon a change in
straining path.”

This is another set of problems that needs major theoretical and
experimental attention.

5.2. Substructure Evolution

5.2.1. Strain Hardening and Latent Hardening

The microscopic (and major) aspect of strain hardening is the change
of the local flow stress with strain. This is what is primarily meant by
the term strain hardening:

ot

=—| =6(,T 0 5.3
Err (I, T, 7€) (5.3)

Note that it is written in differential form, and as a function of state
parameters and current conditions only.t Any relation that involves
strain as an explicit, integral variable (as most of the common ones) is
subject to additional path dependences.””>"”

Equation (5.3) has been written in terms of a single grain. Truly, the
average behavior of many grains (not considering orientation effects)
should be described;”® we have found™ that the different ways of
averaging do not change the result significantly, presumably because

1 8 could also depend on the current state of stress; this may, for example,
explain its orientation dependence in single crystals.”™
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the spread of flow stresses in different grains at any one time does not
cover a wide range of 8’s.

The strain hardening rate, eqn (5.3), has been written in terms of T,
the algebraic sum of shears (or, more generally, the work conjugate of
7). This is the quantity that can be directly related to the macroscopic
strain by the Taylor factor (eqn (4.11)). Equation (5.3) does not imply
that 8 is unique for all combinations of slip increments that make up
the same dI' (as was originally assumed by Taylor*®); in fact, the
inclusion of the straining direction €° in the list of arguments explicitly
allows for such non-uniqueness. Unfortunately, not much is known
about the general behavior under the type of constrained flow
(multiple slip) that occurs in grains of a polycrystal.

There have :been attempts to describe single-crystal hardening in
more detail by allowing for different hardening coefficients for
different slip system interactions. Specifically, if two slip systems are
labelled s and t, the interaction has been written in matrix form:

dr* = h* dy* (5.4)

(and sometimes the orientation-change part of hardening, from eqn
(5.2), has been built into this form™*%). This is probably grossly
oversimplified. For a realistic description, one must at least separate
two effects:® the ratio of the flow stresses on different systems at the
same structure (this is the ‘latent hardening ratio’); and the rate of
development of various components of dislocation densities with slip
on one slip system.

Equation (5.4) would have serious (beneficial) consequences on the
theory of polycrystal plasticity if the hardening matrix were positive
definite,® that is, roughly speaking, if the off-diagonal terms were
smaller then the diagonal terms. The part of A* that is due to the
latent-hardening ratio can be tested in single crystals, operating single
slip systems alternately.®®*> The observations are that latent hard-
ening is always equal to or larger than direct hardening. (It is never
much greater: typical latent-hardening ratios are at most 1-4, except
after easy glide in single slip.)

In summary, the global formulation (5.3) is, for now, as realistic as
anything available.

For a quantitative description of strain hardening of any particular
material, it is best to plot the differential relation (5.3). In the spirit of
our description of polycrystal behavior, this should actually be a
single-crystal relation. However, representative grains in a polycrystal
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are not likely to behave exactly the same as free single crystals. The
most important difference is that they are forced to slip on many slip
systems, whereas most free single crystals deform in single slip. In fcc
metals, the most appropriate single-crystal curve to use is that for
tension or compression in a (111) direction,* since here slip actually
occurs on many slip systems throughout the straining.

Figure 13(a) shows a set of 6(t) diagrams for Al (111) crystals at
different temperatures,® and Fig. 13(b) demonstrates the behavior of
polycrystalline pure Ni and two Ni alloys in torsion.® The latter is, in
our terminology, a ®(o) diagram: textural effects have not been taken
out. From a stress-dependence point of view, Figs 13(a) and 13(b)
exhibit similar behavior: plasticity begins at 6 =~ u/200 (‘stage II');
then 6 decreases in a gradual fashion (‘stage III'). In polycrystals at
very large strains, one generally finds an eventual stage of constant,
very low hardening rate, of the order of u/5000 (or at ©® =~ g/4 for
two-phase materials).>® This region (called ‘stage IV’°) is little
understood,”® and we exempt it from discussion here.

The decrease of 6 with 7 may sometimes be approximated, over a
meaningful range, as being linear; then, this corresponds to a Voce
law of the stress/strain curve.®®"® More generally, however, it is the
actual curve 6(7) that must be tabulated if the behavior of a particular
material is to be described accurately; no generally applicable function
is likely to be found.

5.2.2. Dynamic Recovery and Saturation
An interesting result of crystal plasticity investigations is that the
strain-hardening rate consists of two components'?-13-76

6=6,-60(,T, 1,¢) (5.5)

The first is an athermal hardening component, the second dynamic
recovery; all the temperature and rate sensitivity lies in the latter (and
some dependence on the straining direction is also admitted).
Athermal hardening was first found in free single crystals in single
slip and was there labelled ‘stage II.*” Its prime characteristics are,
however, present in multi-slip deformation and in polycrystals;'? they
are: a value of about u/200 (within, say, £50%), and an insensitivity
to temperature, strain rate, and material (within the same class, such
as cubic, single-phase materials). When this stage is extensive, 6, is
also virtually constant with stress; more generally, it is defined as
limiting behavior at low strains and low temperatures. The value /200
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Fig. 13. The strain-hardening rate 6 versus the flow stress 7, both normalized

by the shear modulus u and plotted as an implicit function of strain: (a)

aluminum (111) single crystals in tension for various temperatures;** (b)

nickel and nickel-cobalt polycrystals in short torsion.® There is a general

decrease that may, over some regime, be approximated as linear and

extrapolated to some ‘saturation stress’ limit; however, the strain-hardening
rate eventually reaches a low constant value in many cases.
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is what led to the statement, in Section 2.1.1, that do/de < E/50: the
square of the Taylor factor is of order 10, and E/u =2-5.

The athermal hardening component has been explained on the basis
of a geometrical-statistical dislocation storage rate.®® It leads to a
more-or-less random (tangled) arrangement of dislocations. Dynamic
recovery, on the other hand, is associated with the rearrangement of
the previously stored dislocations, under the action of stress, tempera-
ture, and the effects of continued straining. It leads to cellular, and
eventually subgranular, substructures.>*

The curves in Fig. 13(a) exhibit an example of an interesting scaling
relation: to a good approximation, all the temperature dependence is
in a stress-scale factor. This type of behavior is found quite generally,
also for effects of strain-rate and even solute concentration (Fig.
13(b)). Thus, one may write (with a yield stress 1)

0=0,— 9,(’_1")

Ts

(5.6)
1,= 1T, I

When the function 8, is linear, we recover the Voce law, and 1, may
be a saturation stress; in general, it is just a stress-scaling factor.

The rate- and temperature-sensitivity of . is different, both in cause
and in magnitude, from the rate- and temperature-sensitivity of the
flow stress (compared at constant structure). It is, in fact, about an
order of magnitude larger. This is particularly important in the limit of
steady-state or flow-stress saturation: if the limit 6 =0 can be opera-
tionally defined by extrapolation (even if it may not actually be
reached), then the rate- and temperature-dependence of this steady-
state limit is controlled by that of dynamic recovery, not by that of
glide kinetics.

The stress exponent (eqn (2.2)) can now be expressed as

_dln¢

dInl
n= _
dlno

T,0=0 dinrt

(5.7)

T,6=0

A useful approximation to this steady-state value is that at the
‘ultimate tensile strength’, where ® = o (not © =0). Note that this
relation between stress and strain-rate is due to thermal activation;
thus, »n should be expected to be temperature dependent (see Section
3.2.4). Within our ‘interest space’, it is of order 10, varying from about
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20 or 30 at room temperature (depending on material) to a very-high
temperature limit of 3 or 4.

5.2.3. Temperature/Material Scaling

The temperature dependence of dynamic recovery, and thus of
strain-hardening, can be expressed as that of the stress-scaling
parameter 7, (eqns (5.6)). An example of such a description is given in
Fig. 14, which refers to a series of pure fcc (111) single crystals; the
saturation stress from a ‘long’ extrapolation was used for 7., and it is
plotted as t,/u versus kT/ub’.

The stress and temperature were normalized by a further, constant
scaling factor each, depending only on the material. It was found that
then all these four materials could be brought into coincidence. The
two scaling factors s* and ¢* (normalized to Al) in fact were correlated
with each other and with the parameter x/ub, where y is the
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Fig. 14. The saturation stress 7, (or any other scaling parameter for the stress

axis in diagrams like Fig. 13) decreases approximately linearly with tempera-

ture, in a semi-logarithmic plot. Different materials may be unified by using

scaling parameters s* and t* for the axes on this plot, which correlate with

each other and with the stacking-fault energy.® Note also that there is a

maximum saturation shear stress of about 5x 107> u at zero temperature for
these pure fcc materials.
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stacking-fauit energy (SFE). This is a quantitative expression of the
well known fact®’ that dynamic recovery is faster for high-SFE
materials than for low-SFE materials, at the same homologous
temperature. In fact, some parameter linked to x/ub, not to T,
provides the appropriate normalization of temperature for plastic flow.

A surprising observation from Fig. 14 was® that this same nor-
malization appears to hold over the entire temperature range, without
ever requiring the introduction of parameters related to self-diffusion.
In fact, Fig. 14 indicates that the functional dependence is essentially
straight:

nZoin ey AL L (5.8)
weoopo o pbigs v
where the two scaling parameters are labelled 7, and g, for each
material. (They are proportional to s* and ¢*.) The expected strain-
rate dependence is also introduced. The strain-rate constant y, is not
well established and probably depends on t,.% It was measured to be
of order 10°s™! in AL'>% and of order 10"°s™" in Cu.*?

The first interesting observation to be made about eqn (5.8) is that
there exists an absolute maximum saturation stress, corresponding to
mechanical collapse of the dislocation structure (in the zero tempera-
ture limit). Its value is approximately 107> pu, (as a crystallographic
shear stress), for all fcc metals.”

Equation (5.8) expresses that the activation energy depends loga-
rithmically on the stress, and a power-law stress/strain-rate relation is
obeyed, with the exponent (eqn (5.7)) independent of stress and
strain-rate, but n =< 1/T.

A detailed scrutiny of this abstraction® revealed that, above
T'/T,,=2/3, the data can also be described in a diffusion-related way.
For the case of aluminum, it was in fact shown from strain-rate data
over a sufficient range that the relationship

b3
n=n0+l;(—Tgs (5.9)

with n,==3-7 provides an even better fit over the entire temperature
range, and gives a constant high-temperature limit of the activation
energy, which agrees with that of self-diffusion.®* In other materials,
similar superposition laws for the steady-state stress-exponent have
also been found;” the data tend to fit a value n =~ 4 (although 3 would
be easier to explain'”?).
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In summary, eqn (5.8) gives a good first-order description of
dynamic-recovery kinetics, at least up to T/T,,=2/3. For a more
accurate tabulation, especially for high-temperature applications, one
must record the function § in

InZ=1n S°+S(k7; ”.SO) (5.8")

I Ho b

with ¥, either constant or possibly dependent on 7./u. In any case, it
seems appropriate from these considerations to leave the value and
functional form of the activation energy open, and not prejudice the
data by normalizing with the self-diffusion energy Q; the Fisher*
parameter kT In(é,/£) should be preferred over the Zener parameter
£ exp(Q/kT), because the result is much less sensitive to the value of
the free parameter (&, vs. Q) chosen for the evaluation.

5.2.4. Creep -

This term is used in two ways. Its definition, for us, is deformation at
constant stress (or at least constant load); then the observed behavior
is strain versus time, or strain-rate versus strain—different from a
‘stress/strain ‘test’. But the term ‘creep’ is also used for ‘slow
deformation at high temperature—because these are the conditions
under which its observation is easy.

In the first (‘true’) definition, ‘creep’ and ‘plasticity’ are merely
different expressions of the same material behavior. That is why this
book is one of the efforts to attain a ‘unified’ description of creep and
plasticity. We, in fact, use the term plasticity for both: plasticity is, ab
initio, allowed to be rate-dependent.

But there is another difference: creep is usually studied near steady
state, with the initial loading strain and the transient creep strain held
to about the same order as the ‘steady’ strain or less. Thus, the
behavior is almost always dominated by recovery (dynamic or static);
this may bring in special problems related to ‘hardening transients’,
which we will discuss in Section 5.2.6 but ignore for now. In addition,
there is a good possibility that the ‘rearrangement strain’ that occurs
during dynamic recovery”® contributes substantially to the total
strain-rate near steady state.>'”> Only tentative descriptions have been
given for its relation to flow stress and strain-hardening.

The material response measured in a creep test is the creep
deceleration

dlné

oe o7

S=—

(5.10)
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We have written it, in the usual form, in terms of the macroscopic
variables o dnd dg, not in the microscopic T and dT'; this is acceptable
because the strains during typical creep deformation in metals are not
large enough to cause any significant change in texture; thus, there is
only a constant orientation factor to be taken care of. Note, however,
that the symbols o and de are in fact supposed to mean the equivalent
stress and strain-rate defined in Section 5.2.1.

An unfortunate fact is that in creep the material parameter (8 in eqn
(5.10)) can only be obtained by double differentiation of the ex-
perimentally obtained &(r) data; for this reason, stress/strain tests are
easier to evaluate: only a single differentiation is needed to obtain 6
or m.

5.2.5. A Differential Constitutive Equation
Until now, we have discussed the material behavior in terms of two
separable aspects: its properties in a given state (having a given
structure); and the evolution of this state/structure with strain. The
first is typically described by a relation 7=1(y, T, 7), such as eqn
(3.8), the second as one or more differential relations such as eqn
(5.3).

One could, of course, differentiate the first relation and insert it into
the second. The results could, for example, be

dlnt dlnt| dint

din 7+
dmnyl; ' 3lntl; dy

dlnt=

dy (5.11)

where we have left out the temperature as an explicit variable. This
describes the dependence of the flow stress on both strain rate and
strain in differential form.

The advantage of such a formulation comes when one writes it in a
phenomenological form, for example

dlno=mdlné+ Hde (5.12)

Here, we have shifted to the macroscopic variables. The coefficients
are measurable; in particulary

dlno| ©
—O'

5.13
88 : ( )
+ H may be called the work-hardening rate, since it equals do/dW, as distinct
from the strain-hardening rate ® =do/de. Which of these is preferred
depends on the application. Note that both the strain and the work are used in
differential form only.
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If eqn (5.12) is viewed as the primary statement of constitutive
behavior, and not as a derivative of the state formulation, as in eqn
(5.11), then it is not necessarily integrable. One can, however, state the
precise conditions under which it is:* when m and H are functions of o
and ¢ only, not of any further, ‘hidden’ variables; then an integrating
factor for de can be found, and the integral of the combination is a
state parameter—there is only one.

There are many reasons why the differential constitutive equation
(5.12) might not be integrable, why there should be ‘hidden para-
meters’. For example, we know that, in general, the texture will
change with strain; then H will depend on path, even when both ¢ and
¢ are fixed. Similarly, o could depend on grain size—say, in particular,
on the minimum dimension of the grains; this changes with strain, in a
path dependent manner. In both of these cases, one could add extra
terms to eqn (5.12). Unfortunately, no macroscopic way is available
(at least as yet) to separate changes in these variables. On the other
hand, fortunately, they are likely to become important only at very
large strains, where regular strain hardening has virtually saturated
out. Thus, one may be able to deal with a single state parameter at a
time, but change their identity at some definable demarcation line.

Finally, there is evidence for another state parameter associated
with dynamic recovery, and we will treat this in detail in the next
section. It may be important for creep. If it is not, eqn (5.12) already
describes creep in the ‘primary’ regime (and in the steady-state limit):
comparison of .eqns (5.10) and (5.12) shows that

8=H/m (5.14)

The instantaneous (iso-structural) rate sensitivity m enters to translate
stress/strain data into strain-rate/strain data.f Again, when &=
d(o, £) only, a single state parameter and an ‘equation of state’ exist;
otherwise, & must be tabulated for different paths. But it is always
measurable, by the operational definition of eqn (5.10).

In summary, the differential constitutive equation (5.12) is ‘unified’
in that it describes both creep and plasticity; and it is general in that it
does not presume the existence of a single state parameter or an

T The best operational definition of m is in fact H/§8, since H and & are well
defined as rates of change at any instant, whereas m describes the result of an
abrupt change ‘at constant state’, which requires back-extrapolation for the
measurement.’
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(integral) ‘equation of state’. Since it is a (first-order) differential
equation, it requires an initial value pair; this is equivalent to a
parameter of the current state.

5.2.6. Hardening Transients

We already sketched in Fig. 3 (b and ¢) that fairly long transients
sometimes occur after a strain-rate or temperature change; this is in
fact a characteristic of dynamic recovery. Qualitatively, it has been
explained as being due to an exhaustion, under the current conditions,
of recoverable dislocation arrangements: when conditions ‘improve’
(lower rate, higher temperature) some extra recovery occurs; in the
reverse case, some athermal dislocation storage must first take place
before recoverable tangles are formed again. Thus, it is really a
transient in the hardening rate (not in glide kinetics).

The transient is evidence for some structural change that cor-
responds to the evolution of a ‘second’ state parameter (other than the
flow stress, and not counting texture, grain size, and others). This state
parameter seems to attain a steady-state value in equilibrium with the
external conditions and the other state parameters after about 3-5%
strain. It is now a question of judgment, for a specific application,
whether one wants to describe this short-term evolution or not. If not,
back-extrapolation from larger strains would give a self-consistent
description—and a value of Ao for the prescribed Aln ¢ or AT that
reflects the new evolution rate (and is much larger than the ‘instan-
taneous’ value, due to glide kinetics).

However, this hardening transient may be quite important in the
neighborhood of steady-state deformation—and therefore for creep. It
is not clear, at this point, whether transient creep (of the ‘normal’
kind) is more directly connected to the main part of strain hardening
or more to the exhaustion of dynamic recovery—probably both, under
different limiting circumstances.

Since we interpret this transient as due to the evolution of a
hardening parameter, it seems appropriate to write a differential
equation for H (which, in a way, is a second-order differential
equation in the flow stress, and thus leads to two state parameters,
even if it is path independent):

dH=-Cdlno+Bdlné- Ede (5.15)

The coefficients have been defined so that they are normally positive.
Without the evolution term at the end, the equation has been used
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before to describe the dependence of work hardening on stress and
strain-rate.”’*® But without this evolution term, the hardening slopes
at points A and B in Fig. 15 should be the same; the whole point of
eqn (5.15) is to describe the fact that this is not true during some
transient regime.

The new coefficient E can be defined as

_oH 516
N o€ a,é ( ’ )

(fombining eqn (5.16) with eqn (5.12), we have
dH=—-(E+CH)de+(B—Cm)dIn¢ (5.17)

The coefficient of de is the curvature of the In o vs. £ diagram (at
constant &), and E is the excess of this curvature in the transient over
that during ‘steady-state work hardening’ (i.e. steady state of the
second state parameter). The second term on the right-hand side is the
rate sensitivity of work hardening; the contribution Cm comes from
glide kinetics and is negligible with respect to that due to evolution
kinetics, B.

q

€

Fig. 15. Two continuous stress/strain curves and one with a change, near A,

from one set of conditions (such as strain rate, temperature) to the other. If

there were but a single state parameter, the ‘future’ starting from point A

would look the same as from point B. The fact that this is generally not true is

interpreted as a transient and as evidence of the need for an additional state
i parameter if this transient is to be described.
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A completely equivalent ‘second-order’ evolution equation can be
written in terms of the creep deceleration:’

déd=—-cdlno+bdlné—ede (5.18)
which leads, with eqns (5.9) and (5.11), to
dé=(e+b8)de +(b/m—c)dlno (5.19)

Here, c K b/m.
In (complete) steady state, the terms in de in both equations (5.15)
and (5.18) vanish, and we have for the stress exponent:

olné¢ dlné¢ C ¢

n= = = —= =

OIlnoly-g 3dlnols_¢ B b

(5.20)

In steady state itself, there is no state parameter: they are all in
equilibrium with external variables. Near steady state, one should
expect one state parameter to be sufficient. It is an important question
for a unified constitutive description at the present time whether this
state parameter is the flow stress (so that eqn (5.12) can be used) or
the hardening rate (which might be describable by eqn (5.15)). In the
first case, it is the dislocation density that adjusts, in the second the
dislocation arrangement.

5.2.7. Conclusion

The evolution of the state is best described by a strain-hardening rate
© as a function of state variables and parameters. Texture changes
during straining can significantly contribute to ©, especially at
intermediate strains where the changes are significant and have not yet
saturated. No simple description of this influence is as yet available,
nor is one likely to be found. Calculations in terms of polycrystal
plasticity simulation are now possible (if the initial texture is known)
and they may be necessary when anisotropic effects are of prime
importance.

The ‘physical’ (rather than textural) hardening rate in the grains
may usually be approximated by that of a representative (‘average’)
grain. Its dependence on stress is primarily due to dynamic recovery,
and it can be scaled by a stress parameter (the extrapolated ‘saturation
stress’, or some other), which itself depends on temperature and
strain-rate. For all of these dependences, simple lincar relations in
certain plots are often a good first approximation—but they are never
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based on a compelling physical mechanism. In any case, the combina-
tion of variables that should be plotted or tabulated against each other
is given with some generality.

An alternative that may sometimes be preferable to a description in
terms of state parameters is an entirely differential constitutive relation
in terms of external variables only (but not necessarily integrable).
The number and order of such differential equations must be sufficient
for the number of state parameters necessary, i.e. the number of
transients identified as important for the material and conditions to be
treated.

6. INTERNAL STRESSES

The term ‘internal stress’ has been used in many different meanings in
plasticity.” These fall into two major classes: first, a ‘true’ stress,
tensorial in character and with sign, to be added to (or subtracted
from) the applied stress, and measurable in principle through the
difference of the local elastic distortions from those expected on the
basis of the applied stress alone. The spatial average of every
component of this stress must be zero, but it may nevertheless be
relevant, especially when the positive and negative contributions are
spatially ordered. This is equivalent to the ‘residual stress’ used on a
specimen scale to describe the consequence of macroscopically non-
uniform deformation; but it also occurs as a consequence of micros-
copically non-uniform deformation, as it occurs in all polycrystals and
especially in ‘mixtures’ of grains of different materials. It also occurs in
‘two-phase materials’, in which different components occur in each
grain. This can be a strong effect and will be discussed first.

The other class of ‘internal stresses’ or ‘back-stresses’ that has been
used frequently is an athermal and rate-independent contribution to
the (scalar) flow stress or glide resistance; it need not be additive
(though this is implied by using the term ‘internal stress’).

Finally, the term ‘internal stress’ has occasionally been used to
describe local stress redistributions due to internal rearrangements
caused by an applied stress, such as by the bowing-out of dislocations
or dislocation walls.'® As was discussed in Section 2.1.1, we wish to
treat as state parameters only quantities that can be assessed in the
unloaded state: they cause all subsequent behavior. %%
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6.1. Two-phase Materials

6.1.1. The Orowan Stress

Imagine a single-crystal matrix with a dispersion of spheres of a second
phase that causes no misfit (and thus no ‘true’ internal stresses) and
has the same elastic properties as the matrix; the only difference
between the two phases is in their yield strengths. Then, at an applied
stress between the two yield strengths, there will be a contribution to
the yield strength of the aggregate due to the need for repeated,
transient bowing-out of the dislocations to surround the particles. If
the spacing between the particles is L, this ‘Orowan stress’!®' is

: 102

approximately vy~ ub/L ©.1)
It is quite insensitive to thermal activation (it is ‘athermal’, rate-
independent), and it may superpose with other contributions to the
flow stress either additively (e.g. with solution hardening'®) or
quadratically (with strain hardening®*!%%).

To summarize: the Orowan stress is an example of a scalar,
athermal contribution to the yield strength (additive or not), but it
does not correspond to any internal stress measurable in the crystal
before loading.

6.1.2. Strain Hardening

The remnants of the dislocations that bowed around the impenetrable
particles in the above example accumulate around the particles and
make for an extra contribution to strain hardening. These extra
dislocations have been described as ‘geometrically necessary’:'% they
accommodate, in the matrix, the (true, tensorial) internal stresses
caused by a now misfitting particle. In fact, their density is initially
proportional to the elastic strain in the particle, and thus to the plastic
strain in the matrix. Their effect on strain hardening is essentially
through this (scalar) dislocation density p; since TxVp, the strain
hardening they cause (if it is alone) is truly parabolic: 7 V/y. This is,
again, a (scalar) contribution to the flow stress (as rate insensitive as
all strain-hardening contributions).

With increasing strain, the statistical accumulation of dislocations
(both because of the above ‘geometrically necessary’ ones and because
of all other obstacles) usually dominates strain-hardening behavior;
thus, parabolic hardening is typically observed only until 6 has
decreased to the value 6, (Section 5.2.2).
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6.1.3. Forward and Backward Internal Stresses

When particles have to deform elastically while the matrix deforms
plastically, a ‘forward’ internal stress must be generated inside each of
them: forward in the sense that it is in the same direction as the
macroscopic plastic strain. Note that it is the strain that counts, in this
case, not the stress; for example, in a single crystal undergoing
primarily single slip, the internal stress in any imbedded, non-
deformable particles is of the same character as the shear strain caused
by slip (even if the stress might be uniaxial tension), and in the same
direction (assuming elastic isotropy).

Since all true internal stresses must average out to zero through the
aggregate, it follows that the average internal stress in the matrix must
be ‘backward’: against the prevailing strain direction. It is, for some
applications, helpful to consider this average back-stress in the matrix;
it has also been called ‘image stress’.'® It is a true, tensorial, internal
stress. Its magnitude is proportional to the volume fraction of
particles; typically, it is about 10-20% of the applied stress, and this
part should truly be subtracted from the applied stress, tensorially, to
get the glide resistance.

This is called the kinematic hardening component in the phenomeno-
logical plasticity literature and often labelled a, signed as a back-
stress; then, the yield condition becomes, instead of (4.32):

¢ —a=M7 (6.2)

where 7 is now the plastic resistance due to both particles and
dislocations stored (and may include a contribution from 7,).

6.1.4. The Bauschinger Effect

Since the plastic deformation in the matrix does not reverse upon
unloading, the internal-stress distribution discussed above will essen-
tially remain. Thus, it will also influence reverse loading. Of course, it
must eventually change sign; but a reverse plastic strain of the same
order as the previous forward strain is needed to achieve this loss of
memory. Thus, there should be, and is, a significant Bauschinger effect
in two-phase materials.'® It seems that no systematic investigations of
its tensor character have been undertaken as yet.

Figure 16 shows stress reversals in an Al-Cu alloy heat-treated in
two different ways:'"” one to keep the alloy single-phase (solution
treated), one to make it two-phase (8'). The qualitative difference
between the two ‘Bauschinger effects’ is obvious.
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Fig. 16. Stress reversal behavior of single-phase (solution hardened) and
two-phase (6") Al-Cu alloy.'” Only the latter is a ‘permanent’ Bauschinger
effect, the former is a strain-hardening transient.

‘Kinematic hardening’ was originally invented to describe Bauschin-
ger effects.” In the spirit we use here (Section 2.1.1), it should best be
used only for the type of ‘permanent’ softening upon reverse loading
as is observed in two-phase materials: it is a hallmark of a true
internal-stress contribution to the flow stress. The substantial lowering
of the proportional limit (sometimes involving a change of sign) is
better described as a strain-hardening transient (Section 2.1.3).

6.1.5. Recovery

Both the internal-stress build-up and the unusually rapid accumulation
of dislocations cause a high rate of energy storage in two-phase
materials. This expresses itself in unusually effective recovery: upon
annealing and reloading under the same conditions, there is an initial
flow stress decrease of the order of 50% in two-phase materials (as
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compared to ~10-20% in single-phase materials), and again a much
longer transient to standard behavior. This is another characteristic of
materials with ‘kinematic hardening’, and can be used as a diagnostic
test.

6.1.6. Conclusion

There is a class of materials, typified by dispersion-strengthened single
crystals, in which internal stresses of opposite sign develop, with
deformation, in the two phases. Their existence can be identified by a
strong, ‘permanent’ softening upon either reverse loading or recovery.
In addition, these materials show an athermal contribution to the glide
resistance at yield, as well as initial parabolic strain-hardening. Thus,
they should be described by both a ‘kinematic’ hardening component
(to be subtracted tensorially from the applied stress) and a scalar one
(to be accounted for in the plastic resistance). We believe this to be
the only class of materials where a kinematic hardening component is
justified; but note that even here the scalar resistance dominates
quantitatively.

6.2. Single-phase Materials

6.2.1. Polycrystal Effects
The interactions between grains in a polycrystal cause internal stresses
that vary roughly with a wavelength of the grain size. While these are
true internal stresses, tensorial in nature, they are already made use of
in all modern theories of polycrystal plasticity: namely such as to
activate enough slip systems to satisfy compatibility. They are the
reason for setting the effective orientation factor of polycrystals to
something larger than the average of that of free single crystals. Thus,
they should not be counted again as an internal stress of the
kinematic-hardening kind. The same is true for the effects of the
so-called geometrically necessary dislocations in polycrystals,'® which
are just another way of describing these very same stresses.”®

In addition to these ‘true’ but irrelevant internal stresses, there is
generally assumed to be some contribution to strain hardening that
specifically relates to polycrystals, presumably due to an extra disloca-
tion accumulation near grain boundaries, more ‘statistical’ than
‘geometrical’ in nature. This is probably the main cause of the mild
grain-size effect in pure fcc materials.”® Its rate sensitivity should be
similar to that of other strain-hardening effects. Indeed, the rate-
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sensitivity behavior of polycrystals and single crystals is quite similar,
at least in pure fcc metals.’?

Finally, there is a ‘back-stress’ effect that leads to the ‘Hall-Petch’
grain-size dependence of the polycrystal yield stress. It is strong only
in materials in which dislocation generation or unlocking makes an
important contribution to the flow stress (and is often associated with a
sharp yield drop). The tensor character of this stress has not been
investigated; probably, it is a scalar contribution to the ghde resis-
tance. It may sometimes have ‘athermal’ character, compared to more
activatable contributions, but can also be very rate sensitive. In any
case, it does not qualify as a kinematic hardening component.

6.2.2. Forward and Backward Internal Stresses

There are, of course, true internal stresses in any material; €.g. every
dislocation is a source of a (tensorial) stress field, each component of
which averages out to zero over the body (requiring certain ‘image
stresses’ in finite bodies). In most materials—those that form disloca-
tion tangles and cell walls of the ‘thick’, disordered kind—these
internal stresses are actually ordered: they tend to be ‘forward’ inside
the tangles or cell walls, ‘backward’ in the more-or-less dislocation-
free cell interiors.”> This distribution has some similarities to that in
two-phase materials. However, its effects on macroscopic properties
are quite different.

The polarity of the internal stresses in cellular dislocation structures
has been made use of in a number of ways.**'® First, the forward
stresses inside cell walls provide the driving force for dislocation
rearrangements during dynamic and static recovery.®!''%!1! Second,
the backward stresses in the cell interiors must be important during
loading and unloading: during small-strain, contained plastic flow.%112
Finally, the very existence of the polarity makes some kind of
asymmetry between forward and reverse straining possible.®

Where these internal stresses are different from those in two-phase
materials is in their effect on the macroscopic flow stress: we claim
they have no effect at all in single-phase materials. On a mechanistic
basis, this is plausible because of the areal nature of glide in these
materials:* the ‘critical gates’ through which dislocations must pass to
achieve long-range slip”®® are precisely at the saddle points between
the regions of forward and backward internal stresses, and are thus at
least approximately at zero internal stress.

More potent, perhaps, is a macroscopic argument: the very fact that
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the macroscopic flow stress after any transient is unaffected, in
single-phase as opposed to two-phase materials, by a reversal of
straining or by recovery is in itself evidence that internal stresses are
not relevant for this particular property—and is, in fact, another
justification for using the macroscopic flow stress as an important
parameter to describe the plastic state.

A powerful tool to ascertain the presence of any separable, athermal
contribution to the flow stress (whether tensorial or scalar) is the
Haasen plot introduced in Section 3.1.7: when the rate sensitivity mt
of the flow stress is proportional to the flow stress itself (i.e. when the
‘Cottrell-Stokes law’ is obeyed), then there is no such separable
component—and this is the case e.g. for pure fcc metals, in which cell
structures do develop. If there were an independent athermal con-
tribution to the flow stress, there would have to be an intercept of the
data such that the rate sensitivity vanishes at a finite stress.

6.2.3. Stress Relaxation and Unloading Effects

Stress relaxation after plastic deformation exhibits an ever decreasing
rate of stress decrease, which is a consequence of the rapid decrease of
strain rate with stress. The temptation is great to extrapolate to a finite
stress level at which the rate would vanish. This interpretation does
not hold up under more sophisticated evaluations.” In fact, in the best
tests at the lowest rates,''> the rate sensitivity increases again (due to
the increasing influence of dynamic recovery at very low rates, in our
interpretation).

When the specimen is unloaded rapidly but partially, one observes
what might be called ‘negative stress relaxation’, and this terminology
would lead one to believe in a finite stress where stress relaxation is
zero, and to call this an ‘internal stress level’. This is, again, a
misleading interpretation. The response on both sides of this presumed
internal stress level is by no means symmetrical (as one should expect
in such an interpretation); indeed, the ‘negative relaxation’ has all the
marks of a transient effect: the behavior is not reproducible. We would
interpret all ‘negative relaxation’ as just another expression of
unloading effects: the reverse motion of some of the last dislocations
to have moved forward. This occurs primarily in the cell interiors, and
while these are, indeed, under a back-stress (Section 6.2.2), this is not
an additive contribution to forward flow.

Of all the parameters that have been called an ‘internal stress’, the
‘relaxed level’ is perhaps the least deserving one. Further support for
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this opinion is to be seen in the fact that it typically depends on
temperature and actually tends to be a constant fraction (~75%) of
the current flow stress.

6.2.4. Power-law Creep

The steady-state relation between stress and strain-rate is often
adequately described as a power law (Section 5.2.3). When a direct fit
of the data gives a stress exponent of order 10, another description is
often tempting: namely, to subtract an ‘internal stress’ from the
applied stress to form an ‘effective stress’, which then only requires a
smaller exponent—which is easier to explain. This is very common
practice. It is justified when there are other, independent reasons to
postulate a lower-limit stress, such as in two-phase materials.

There is one cause for such a threshold that is always legitimate, but
almost never important (certainly not in our regime of interest):
namely, the thermodynamic threshold.® It represents the work
necessary to provide whatever energy needs to be stored during plastic
deformation. (See Secton 2.1.6.)

6.2.5. The Flow-stress Plateau at Intermediate Temperatures

A diagram of flow stress-versus temperature almost invariably exhibits
three regions (Fig. 7): a fairly rapid decrease at low temperatures, a
more-or-less constant flow stress at intermediate temperatures (at least
when divided by an elastic modulus), and another decrease at
temperatures in excess of, typically, half the melting point. The
high-temperature drop is almost certainly associated with concurrent
dynamic recovery and its associated rearrangement strains (Section
5.2.4). But if it were not there, perhaps the temptation would be less
to regard the low and intermediate temperature regimes as separate.
Both regimes together certainly fall qualitatively into the category of
mechanisms (all those discussed here) that get harder and harder to
activate as the stress decreases. Thus, the so-called plateau could be
merely a very slowly decreasing stress (similar to the late part of a
stress-relaxation test).

In materials that contain substitutional solutes, there are two other
reasons for ‘plateau’-like behavior: one is that here the activation
encrgy may well be proportional to the reciprocal of the stress, which
makes for a much slower decrease with temperature;?® the other
reason lies in an expected mobility of solutes which, in extreme cases,
would actually give a ‘hump’ in the 7(7) diagram.
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In conclusion, there are a number of at least qualitative explanations
for the appearance of a more-or-less level flow stress at intermediate
temperatures that do not require the introduction of a separate
‘internal stress’;>® such a new parameter should only be used when
there are other reasons for needing it. The easiest example of such
another reason, as pointed out repeatedly, is a failure of the
Cottrell-Stokés law in the direction that extrapolates to a zero rate- or

temperature-sensitivity at a finite stress (Section 3.1.7).

6.2.6. Conclusion

While there are many causes for true, tensorial internal stresses in real
materials, most of these affect only transient behavior, but not the
macroscopic flow stress. The latter is an appropriate quantity to
characterize the deformed state of the material, using as many
parameters as necessary. The first of these parameters is always the
mechanical threshold: the flow stress back-extrapolated to zero tem-
perature, below which most deformation happens. Sometimes, but by
no means always, there is, in addition, a lower threshold or (scalar)
‘athermal stress’, which may superpose with other contributions to the
plastic resistance in a linear or nonlinear fashion. Finally, and
probably only in two-phase materials, there is a true long-range,
tensorial internal back-stress (in the deforming matrix) which must be
subtracted from the applied stress tensor before insertion into the yield
criterion: this is the only legitimate cause for ‘kinematic hardening’.

7. APPLICATION

As was pointed out in the Introduction, the most important lesson to
be learned from materials science is that one cannot expect a single set
of constitutive relations to hold for all materials and conditions. A
worthy long-range aim of constitutive-relations development is to
establish a systematic procedure by which it can be ascertained which
class of materials and which regime of conditions a particular foreseen
application falls into.

In this article, we have focussed on one such class and one such
regime—even through we believe it to be a very broad and important
case: uniform plastic deformation in (primarily single-phase) metals
and alloys, at not too high or too low a temperature, at not too high or
too low a strain rate, at not too small or too large strains. We have




CONSTITUTIVE BEHAVIOR BASED ON CRYSTAL PLASTICITY 73

stated in the Introduction the expected range of these variables under
which (quasi-static) dislocation motion and accumulation dominate the
behavior. In Section 7.1 we will outline some experimental tests that
can be used to establish whether one indeed is in this regime, and what
observations might warn one of special effects. Then, in Section 7.2,
we will summarize the set of constitutive relations that appear to be
most useful for this ‘interest space’.

7.1. Diagnostics

7.1.1. Stress/Strain/Strain-rate Test

A very large amount of information can be derived from an analysis of
the simplest test of all: a single tension test in which the whole
stress/strain curve is recorded.t The only additional variable that must
be introduced to assure this pay-off is the strain rate: it should be
abruptly changed many times during the test. Good interpretability is
ensured by using one of two procedures: either change the strain-rate
up and down (by about a factor of 10) regularly every 3% strain or so;
or make the slow rate the ‘master’ rate at which most of the straining
is done and make occasional excursions to a higher strain rate and
back. The amount of strain in any excursion must be large enough to
have passed through any transient behavior, and the data acquisition
system must be sufficiently sensitive to record the subtle changes. Even
in materials in which the rate sensitivity is negligible in magnitude, a
rate change can serve as a potent diagnostic tool.

First, an evaluation without rate changes. Assess whether there is a
yield drop—in which case ignore that part of the stress/strain curve,
since it relates to non-uniform deformation. Then see whether the
slope of the load—elongation curve is reasonably constant for the first
few percent strain, and of order £/50 (E is Young’s modulus): then
you are certainly within our ‘interest space’. If it is much smaller (by
an order of magnitude or so) you probably have a pre-deformed
material, or perhaps an aged one—not all is lost.

If the initial plastic part of the stress/strain curve looks more
parabolic than linear, there are two easy possibilities: either (at high
temperatures) you are close to flow-stress saturation, which will be

T A compression test is just as useful, especially when not enough material is
available, or when the ductility is quite limited. Teflon or some other
lubrication can usually assure homogeneous deformation, which can be
checked by inspection of the shape of the deformed specimen.
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obvious (and you may wish to treat everything before as-a transient);
or you have a material in which a second phase plays a significant role.
In the latter case, plot o” vs. € to see whether you get an essentially
straight initial part. In this case, Section 7.1.2 becomes important. (We
always assume materials of cubic lattice structure; in non-cubic
polycrystals, there may be an extended region of elasto-plastic
transition, also linked to high internal stresses.''*)

Next check the appearance of any transients upon an increase in
strain-rate. If they are less than about 0-5% long, ignore them and
extrapolate through them: they are due either to machine effects'” or
to some adjustments in the dynamic dislocation structure.’® If the
stress/strain curve after any such short transient is accurately parallel
to the one at the lower strain rate, you have the easiest case of all: a
single state parameter (which might as well be the strain in this case).
On the other hand (which is more likely at larger strains), if you have
a higher-than-normal strain-hardening rate for more than 1% strain, it
is probably due to a significant influence of dynamic recovery, and thus
more complicated kinetics: Sections 5.2.4 through 5.2.6 apply, and you
must decide whether this transient is important for your application or
may be extrapolated through.

Now for a quantitative evaluation of the rate sensitivity. First, assess
whether Aln'o/Alné the way you measure it (using the applied
stress, no ‘effective stress’), is smaller or larger than 0-03. If larger,
you are probably measuring a steady-state rate-sensitivity 1/n (eqn
(5.7)), or at least one that is si(gniﬁcantly influenced by dynamic
recovery. For use in the following analysis, it would be better to try a
more ‘instantaneous’ evaluation, i.e. a shorter back-extrapolation. If a
truly iso-structural value is between, say, 0-03 and 0-01, the glide-
controlling obstacle is probably quite small (a solute acting in-
dividually, or the ‘Peierls stress’); in this case, nonlinear elastic effects
are likely to be important and the parallelism of yield surface and
plastic potential may well be violated (Section 4.2.1).

As a next step, plot mo = Ac/Aln &, at various strains, versus the
flow stress at that strain: the ‘Haasen plot’ (Section 3.1.7). Warning: if
the slope of this line is negative, and m itself is not negative yet, it may
become so at higher strains or temperatures or concentrations, and
lead to jerky flow.”®

If the data in the Haasen plot extrapolate to the origin, the
Cottrell-Stokes law is obeyed and a single state parameter suffices to
describe the .monotonic-kinetic behavior. If the plot gives a fairly
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straight line that does nof extrapolate to the origin, two flow-stress
contributions superpose linearly; one may be ‘athermal’ if the line
extrapolates to a finite stress at zero rate sensitivity. In the latter case,
there may be a kinematic-hardening component (to be ascertained by
the tests under Section 7.1.2). In general, both contributions may be
thermally activated.

Finally, assess the rate sensitivity of the ultimate tensile strength: a
special case of 1/n, as defined in eqn (5.7). If it is less than about 0-1,
the formalism outlined in Section 5.2.3 can be used, without the need
of introducing any ‘pre-exponential’ stress exponent, and most likely
without a real influence of diffusion mechanisms.®> When 1/n > 0-1
(and the temperature is larger than half the melting point) more
caution is advised.

Last but not least, look at the specimen, for any evidence of grossly
non-uniform deformation, or of anisotropic deformation. If the aspect
ratio of the cross-section of a tensile sample has changed, the material
was not isotropic at the start of deformation; in fact, it did not even
have the symmetry of the tensile test: a fiber in the tensile axis. For
this purpose, an initially cubic compression specimen is even more
instructive, since shear strains can be seen that would not be expected
on the basis of the test symmetry. When any initial anisotropy is
discovered, the yield function to be used is unknown—and not likely
to be well represented by a von Mises assumption.

7.1.2. Stress Reversal and Recovery
When there is suspicion of a kinematic hardening component (for
example, because of initial parabolic hardening, or a positive stress
intercept on the Haasen plot), two additional tests are advisable. The
easiest is an annealing test, at a temperature where recrystallization
does not occur (Section 6.1.5): is the flow stress upon reloading under
the old conditions less than 80% of the one reached previously? Or,
more to the point, does the new stress/strain curve fail, by a
substantial margin and after many percent strain, to join up with the
extrapolation of the previous one? (Actually, it is the behavior in a
diagram of ©® vs. o that gives the best information.’'®) Then, a
kinematic hardening component, of the order of this failure, may be
appropriate.

Secondly, if possible, a Bauschinger test would be instructive: if the
behavior is of a transient nature, ‘normal’ after a few percent strain, a
kinematic hardening component is not indicated (Section 6.1.4).
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7.1.3. Temperature Dependence

This is the hardest test to execute; it depends on the application
whether, and in which range, it is worthwhile. At very low tempera-
tures (say, <50 K), one must assess whether dislocation inertia may be
important;*® this is indicated when the flow stress falls below the
back-extrapolation from higher temperatures. At somewhat higher,
yet subenvironmental temperatures, a strong decrease of stress with
increasing temperature is probably due to an influence of the Peierls
stress, and is possibly connected to a non-normality of the strain-
increment on the yield surface.

At intermediate temperatures (typically at room temperature and
above), one may wish to investigate the nature of an apparent stress
plateau (Section 3.1.4), especially if the rate sensitivity indicated a
negative trend in the Haasen plot: then, dynamic strain-aging and its
instabilities may occur under slightly changed conditions. In solution-
hardened alloys in general, one may wish to plot o vs. T - 0, to see
whether this provides a reasonable description.” If the plateau is
associated with a positive stress intercept in the Haasen plot, an
investigation of the temperature dependence of the strain-rate sen-
sitivity can be quite instructive.''

Finally, at high temperatures (say, >T7,/2), the treatment of the
yield stress becomes complicated (it being influenced by concurrent
dynamic recovery), but near-steady-state behavior may be assessed
reasonably well. Here again, it becomes important to study the
temperature dependence of the rate sensitivity—except now the one in
steady state, 1/n. An instructive plot is the stress exponent n versus
ub?/kT: it is likely to extrapolate to a finite value (around 4) at infinite
temperatures (eqn (5.9)). For values near there, some superposition
of mechanisms is probably appropriate. But so long as n depends (in a
continuous fashion) on temperature, this is evidence for a stress-
dependent activation energy, and thus for inapplicability of diffusion-
only mechanisms.

7.2. Constitutive Relations

We will now give, as an example, one set of constitutive relations for
cubic metals -or alloys fulfilling the following assumptions (using the
symbol €{ , } to mean ‘in the range of’). The specified ranges are not
necessarily restrictive, as we have discussed other cases in the
foregoing; we merely mean that within these ranges we should be
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comfortably within the scope of the explicit or implicit assumptions
made.

(a) Only macroscopic flow will be treated; loading and unloading
transients will be ignored. This may be stated as

Ae >> Ao/E (E is the elastic modulus)

(b) There is no tensorial internal back-stress at this mMacroscopic
flow level:

;<K 0y

(Otherwise, perhaps all equations still hold if a is subtracted from oy,
whenever the stress appears as a tensor.)

(c) The ‘instantaneous’ rate sensitivity of the flow stress (as
measured by the applied equivalent stress):

:amo
T dlné

= €{0, 0-01}
T

(d) The strain-hardening rate (again measured by macroscopic
variables):

do

@E'a—g

= e{0/2, E/50}

T,

The upper limit, E/50, again suggests that there is no kinematic-
hardening component. The lower limit, 0/2, is set beyond the
‘ultimate tensile strength’ (UTS), for which ® = o; but it is chosen at
the safe side of the point where the strain-hardening behavior typically
changes in a qualitative manner (at about © = o/4 or perhaps E/500).
In creep, the minimum creep rate under constant load is included; the
regime much beyond this level does require more scrutiny.

(e) The rate sensitivity of the UTS (the reciprocal of the stress
exponent of the minimum creep rate at constant load):

1 a1 s
= =g uns|
n, dlné |,

(Even 1/6 probably works.) This indicates a strong influence of
dynamic recovery (and less, if any, of diffusion).
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7.2.1. Multiaxial Relations

For simplicity, we only summarize the relations for the case that fully
constrained conditions apply to all grains: an upper bound, and a good
approximation for equi-axed grains. Then, as far as the material
element is concerned, all strain increments are locally prescribed.f
Split up into direction and magnitude, they may be labelled

de, = £3de (7.1)

(We now drop all bars for averages and double bars for prescribed
components.)
The deviatoric stress becomes, in principle:

o,=P,e M1t (7.2)

In practice, as we have elaborated in Section 4.2.5, the matrix P, is
known only for isotropy under the von Mises assumption, when it is
8, But plastic anisotropy is of major qualitative importance for any
description of multiaxial behavior, and no simple description of its
effects exists as yet. For a quantitative treatment, it is imperative that
P(£°) be tabulated for the entire relevant subspace.

The values P,, for each ¢” can, in principle, be obtained in three
ways: by experimental yield surface determinations under all expected
conditions; by experimental texture measurements followed by a
polycrystal calculation; or by a polycrystal calculation ab initio,
assuming the initial texture to be known (e.g. isotropic). It is not
impossible that the last method becomes feasible in the not-too-
distant future. For now, only cases near isotropy can be explicitly
treated: say, for 20-30% strain from an isotropic situation—or the
trivial case of proportional loading of a specimen that already has (at
least) the symmetry of the test.

Finally, to describe the evolution of 7, one will need the microscopic
equivalent strain increment

dr = M de (7.3)

7.2.2. Kinetics and Evolution

With respect to the kinetics of flow and strain-hardening, one may
adopt the same point of view as for the multiaxial part of the
constitutive relations: they are too complicated to expect a sufficiently

1+ If, in fact, some components of stress are locally prescribed, this requires an
iterative procedure.
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accurate description in terms of functions—tables are needed. The
principal use of the results of physical plasticity is then a specification
of what the normalized parameters are that should be tabulated or
plotted against each other. This is what we shall do in the following;
but we will also repeat the simple functions that have given a
reasonable description in many cases, for the regime specified at the
beginning of Section 7.2.

The flow stress may have more than one component; however, one
cannot make use of this in a phenomenologically sound way unless one
has an operational way to separate the components, such as by using
the Haasen plot of rate sensitivity (Section 3.1.7), or the Hall-Petch
plot of grain-size dependence. The appearance of ‘plateaus’ in
flow-stress vs. temperature or vs. time diagrams is not sufficient cause.

Any one component of flow stress is likely to obey a law of the kind

(eqn (3.9))

T 3 kT ')'/0>
=g “ln—' 7.4
u(T, p) no <ub3 Mé 7-4)
where (eqn (3.8) and using x for the argument of s above)
s(x)=(1—(x/go)*?)
()= (1~ (x/g0)™”) (7.4

?0 = 108 S—1

and ©/u, is obtained by back-extrapolation to s =1, i.e. T =0.

The dependence of the state parameter # on history parameters such
as strain is not explicitly stated; it must be given in differential form.
Most easily, it is specified directly by the variation of t (not %) with
strain at a standard T and ¢, in which case the value of s in eqn (7.4)
should, strictly, appear as a factor in the following equations.

The strain-hardening rate (eqns (5.3) and (7.3)) appears to have the
general form (eqn (5.6))

0=6,- 0,<T - TO) (1.5)

T

5

where the general function may have the special form
0.(r)=6,r

7.5")

6, = u/200 (7.5

To is the yield stress, and 7, is a scaling parameter that obeys the
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relation (eqn (5.8"))

T, T, kT 7"s0>
LS L RN il A ) 7.6
In p In e S(ub3 no (7.6)

where the general function S(x) approximately obeys (egn (5.8))

S =~
(f‘) x/f;'s_1 (7.6')
¥s, = 10”8
T/ 1o is obtained by back-extrapolation to T =0, and g, follows from
the measured slope of the plot.

When eqns (7.5') and (7.6') apply, one can extrapolate to steady-
state creep with a stress exponent n that is independent of stress and
strain-rate, but inversely proportional to temperature. At higher
temperatures, eqn (7.6') is not found to be sufficiently accurate, and a
useful expression for n becomes (eqn (5.9))

b3

n=not o8

(7.7)
with ny=4.

Transient creep is best described by the deceleration parameter
(egns (5.10), (5.13), (5.14))

6 o (7.8)
However, it is at present not clear whether the strain-hardening rate
measured in the ‘macro-flow’ way (past the ‘long transient’; Section
5.2.6) is in fact relevant near steady state, or whether some measure of
this strain-hardening transient is more appropriate. In general, one
should use a differential description such as outlined in Section 5.2.5.
When the relations (7.4), (7.5) and (7.6) hold, but not their primed
counterparts, a tabular description may be necessary—but one has
gained a great deal from applying the physical principles appropriate
for this regime: e.g. temperature and strain rate appear essentially as a
single parameter, kT In £, properly normalized by material constants;
the strain-hardening rate depends on stress only, and the stress-scaling
parameter depends on the strain-rate/temperature combination. Thus,
one needs only three two-dimensional plots or tables, not the whole
four-dimensional space spanned by 7, 8, T and €.
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7.2.3. Conclusion

We have presented a sample, a tentative example, of the procedure we
envisage for future determinations of constitutive behavior: a series of
diagnostic tests, proceeding from simple to more complex if necessary;
and a set of normalized parameters between which, for the regime of
interest, relations (in functional or tabular form) are to be found. This
technique needs much development work.

8. SUMMARY AND RECOMMENDATIONS

Article of Faith

The current behavior of a material depends only on its current state,
which is embodied in its current structure (microstructure, substruc-
ture). History variables such as time and strain can enter the
constitutive relations only in differential form: describing the evolution
of the state. The current rate of evolution is one aspect of current
behavior, determined by the current state. Rearrangements of the
structure upon loading are also entirely determined by the structure in
the unloaded state.

Elastic-Plastic Transition

The elastic—plastic transition is very sharp; deviatoric elastic strains are
negligible with respect to plastic ones except in the very vicinity of the
yield stress. The constitutive behavior using a yield or flow stress
defined by back-extrapolation of the strain-hardening curve is much
simpler and more reproducible than the regime in which both plastic
and elastic distortions must be taken into account, and the simpler
description does capture the most important features of plasticity.

Yield Surface for Rate-sensitive Materials

The concept of a yield criterion is useful even for rate-sensitive
materials, especially when (as usual) the rate sensitivity is low.
Overstress formulations may be appropriate at very high strain-rates
(>10°s™!). In the normal range, thermal activation dominates rate
sensitivity, and it lowers the yield stress from the rate-independent
(zero temperature) limit, the ‘mechanical threshold’, which is a
primary parameter of the dislocation theory of flow.
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Normality Flow Rule

The strain-increment direction is normal to the yield surface if, and
only if, the state of the material, as it affects the plastic resistance,
does not depend on the state of stress. This is true for most metals in
the normal range of applications, but is expected to be violated under
conditions of non-negligible nonlinear-elastic effects (e.g. in very-high-
strength materials, at very high pressures, and in polymers). In any
case, a plastic potential exists and provides a useful description in
terms of the relation between strain rates and (total) stresses (rather
than stress rates).

Plastic Anisotropy

The shape of the yield surface is strongly influenced by the crystal-
lographic texture of the material. Even at mild textures, it departs
significantly from a von Mises ‘sphere’ and ‘oval’ shapes: extensive flat
regions and sharp (though not necessarily discontinuous) ridges and
vertices develop, which are very important for plastic-stability con-
siderations. It is unlikely that a useful functional relation for such
realistic yield surfaces will be found; numerical descriptions appear
mandatory. Appropriate subspaces have been identified in which, for a
given texture symmetry, the yield surface must be derived (from
experiment or simulation).

Hardening Rules

The evolution of the yield surface is also strongly influenced by the
texture changes accompanying plastic deformation. These expected
changes in shape are superposed on a general increase in size.
‘Kinematic hardening’ is significant only in two-phase materials, so
long as the macroscopic flow stress is being described.

Kinetics of Flow and Evolution

The rate dependence of the flow stress is usually negligible, but it
provides an important tool to identify deformation mechanisms; in
particular whether more than one contribution to the flow stress can
be operationally identified (such as an ‘internal stress’ in addition to
the mechanical threshold). The rate dependence of strain hardening is
more substantial and more important; it controls steady-state flow and,
more generally, flow at a low strain-hardening rate (whether this be
due to large prestrains or high temperature).
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Strain Hardening

Strain hardening consists of an athermal and a dynamic-recovery part.
The latter is primarily stress dependent, with a stress-scaling para-
meter that depends on temperature and strain rate. At very high
strains, an additional, little-explored stage causes slow but steady
hardening in many materials.

Transients

Noticeable transients in the strain-hardening behavior occur after
changes such as rate-changes, stress reversal, and recovery. They last
for about 3% strain. If they are significant for the particular
application, an additional state parameter is necessary to describe the
evolution of each type of transient.

Differential Constitutive Relations

An attractive alternative to constitutive descriptions in terms of
(tentatively) identified state parameters and their evolution is an
entirely differential description, in terms of external state variables
only; in that case, the initial conditions are equivalent to state
parameters, and the number and order of such differential equations
must allow for the requisite number of initial conditions. A new
formulation of this kind has been proposed that incorporates hard-
ening transients.

Temperature Dependence

The most important temperature dependence is that of the steady-
state limit stress, or other parameters characterizing dynamic recovery.
In some cases at least, it obeys a single law over the entire
temperature range up to at least 2/3 of the melting point; changes in
mechanism need not then be postulated. The activation energy is
stress dependent, over this regime, and correspondingly the stress
exponent depends on temperature in a continuous fashion.

The temperature dependence of the yield stress is mild by com-
parison, but in most cases it is not nil, so that an athermal, ‘internal’
stress need not be postulated as an additional parameter. Solute
hardening, and especially solute mobility, play an important role in
this regime.

Creep
The view is taken here that plasticity is inherently rate sensitive and
thus indistinguishable (except for the boundary conditions) from
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creep. It is, however, an important open question whether the creep
behavior near steady state is correlated with regular strain hardening
or with the prominent hardening transients in this regime.

Internal Stresses

There are reliable methods to test whether any macroscopic state
parameter that fits any of the many meanings of this term needs to be
introduced. This is expected in two-phase materials.

Normalized Variables

Various external variables and material parameters occur, according to
crystal plasticity theory, in certain combinations only. This can reduce
significantly the amount of information that need be collected. Some
such combinations are: 7/u, (kT /ub)In (¢/£,) (where only &, is a free
parameter to which, however, the results are not sensitive), and 6/u
as well as 6/mr, the deceleration rate in creep.

Functional versus Numerical Description

In general, we have come to the conclusion that functional relations
will rarely be:easy and accurate enough to describe the various
dependences outlined above. The most important task of physical
constitutive relations development is the identification of the smallest
space in which the relationships must be specified. Then, a numerical
description (tabular or diagrammatic) may be feasible. Inasmuch as
most applications in which realistic material descriptions are needed
are in numerical, computer-code form anyway, a numerical approach
to materials behavior is not inopportune.
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